Markov Decision Processes with Discounted Costs: New Test of Non-optimal Actions

2020 ◽  
Vol 12 (05-SPECIAL ISSUE) ◽  
pp. 608-616
Author(s):  
Abdellatif Semmouri ◽  
Mostafa Jourhmane ◽  
Bahaa Eddine Elbaghazaoui
1983 ◽  
Vol 20 (02) ◽  
pp. 368-379
Author(s):  
Lam Yeh ◽  
L. C. Thomas

By considering continuous-time Markov decision processes where decisions can be made at any time, we show in the case of M/M/1 queues with discounted costs that there exists a monotone optimal policy among all the regular policies.


1983 ◽  
Vol 20 (2) ◽  
pp. 368-379 ◽  
Author(s):  
Lam Yeh ◽  
L. C. Thomas

By considering continuous-time Markov decision processes where decisions can be made at any time, we show in the case of M/M/1 queues with discounted costs that there exists a monotone optimal policy among all the regular policies.


1983 ◽  
Vol 20 (04) ◽  
pp. 835-842
Author(s):  
David Assaf

The paper presents sufficient conditions for certain functions to be convex. Functions of this type often appear in Markov decision processes, where their maximum is the solution of the problem. Since a convex function takes its maximum at an extreme point, the conditions may greatly simplify a problem. In some cases a full solution may be obtained after the reduction is made. Some illustrative examples are discussed.


Sign in / Sign up

Export Citation Format

Share Document