scholarly journals A Survey on Multi Objective Optimization Challenges in Swarm Intelligence

Author(s):  
Rich Caruana ◽  
Yin Lou

Various challenges in real life are multi-objective and conflicting (i.e., alter concurrent optimization). This implies that a single objective is optimized based on another’s cost. The Multi-Objective Optimization (MOO) issues are challenging but potentially realistic, and due to their wide-range application, optimization challenges have widely been analyzed by research with distinct scholarly bases. Resultantly, this has yielded distinct approaches for mitigating these challenges. There is a wide-range literature concerning the approaches used to handle MOO challenges. It is important to keep in mind that each technique has its pros and limitations, and there is no optimum alternative for cure searchers in a typical scenario. The MOO challenges can be identified in various segments e.g., path optimization, airplane design, automobile design and finance, among others. This contribution presents a survey of prevailing MOO challenges and swarm intelligence approaches to mitigate these challenges. The main purpose of this contribution is to present a basis of understanding on MOO challenges.

Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Algorithms ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 38
Author(s):  
Amr Mohamed AbdelAziz ◽  
Louai Alarabi ◽  
Saleh Basalamah ◽  
Abdeltawab Hendawi

The wide spread of Covid-19 has led to infecting a huge number of patients, simultaneously. This resulted in a massive number of requests for medical care, at the same time. During the first wave of Covid-19, many people were not able to get admitted to appropriate hospitals because of the immense number of patients. Admitting patients to suitable hospitals can decrease the in-bed time of patients, which can lead to saving many lives. Also, optimizing the admission process can minimize the waiting time for medical care, which can save the lives of severe cases. The admission process needs to consider two main criteria: the admission time and the readiness of the hospital that will accept the patients. These two objectives convert the admission problem into a Multi-Objective Problem (MOP). Pareto Optimization (PO) is a common multi-objective optimization method that has been applied to different MOPs and showed its ability to solve them. In this paper, a PO-based algorithm is proposed to deal with admitting Covid-19 patients to hospitals. The method uses PO to vary among hospitals to choose the most suitable hospital for the patient with the least admission time. The method also considers patients with severe cases by admitting them to hospitals with the least admission time regardless of their readiness. The method has been tested over a real-life dataset that consisted of 254 patients obtained from King Faisal specialist hospital in Saudi Arabia. The method was compared with the lexicographic multi-objective optimization method regarding admission time and accuracy. The proposed method showed its superiority over the lexicographic method regarding the two criteria, which makes it a good candidate for real-life admission systems.


Author(s):  
Mikhail Gritckevich ◽  
Kunyuan Zhou ◽  
Vincent Peltier ◽  
Markus Raben ◽  
Olga Galchenko

A comprehensive study of several labyrinth seals has been performed in the framework of both single-objective and multi-objective optimizations with the main focus on the effect of stator grooves formed due to the rubbing during gas turbine engine operation. For that purpose, the developed optimization workflow based on the DLR-AutoOpti optimizer and ANSYS-Workbench CAE environment has been employed to reduce the leakage flow and windage heating for several seals. The obtained results indicate that the seal designs obtained from optimizations without stator grooves have worse performance during the lifecycle than those with the stator grooves, justifying the importance of considering this effect for real engineering applications.


2018 ◽  
Vol 23 (13) ◽  
pp. 4911-4925 ◽  
Author(s):  
F. Passos ◽  
R. González-Echevarría ◽  
E. Roca ◽  
R. Castro-López ◽  
F. V. Fernández

A test blueprint/test template, also known as the table of specifications, represents the structure of a test. It has been highly recommended in assessment textbook to carry out the preparation of a test with a test blueprint. This chapter focuses on modeling a dynamic test paper template using multi-objective optimization algorithm and makes use of the template in dynamic generation of examination test paper. Multi-objective optimization-based models are realistic models for many complex optimization problems. Modeling a dynamic test paper template, similar to many real-life problems, includes solving multiple conflicting objectives satisfying the template specifications.


Author(s):  
Huizhuo Cao ◽  
Xuemei Li ◽  
Vikrant Vaze ◽  
Xueyan Li

Multi-objective pricing of high-speed rail (HSR) passenger fares becomes a challenge when the HSR operator needs to deal with multiple conflicting objectives. Although many studies have tackled the challenge of calculating the optimal fares over railway networks, none of them focused on characterizing the trade-offs between multiple objectives under multi-modal competition. We formulate the multi-objective HSR fare optimization problem over a linear network by introducing the epsilon-constraint method within a bi-level programming model and develop an iterative algorithm to solve this model. This is the first HSR pricing study to use an epsilon-constraint methodology. We obtain two single-objective solutions and four multi-objective solutions and compare them on a variety of metrics. We also derive the Pareto frontier between the objectives of profit and passenger welfare to enable the operator to choose the best trade-off. Our results based on computational experiments with Beijing–Shanghai regional network provide several new insights. First, we find that small changes in fares can lead to a significant improvement in passenger welfare with no reduction in profitability under multi-objective optimization. Second, multi-objective optimization solutions show considerable improvements over the single-objective optimization solutions. Third, Pareto frontier enables decision-makers to make more informed decisions about choosing the best trade-offs. Overall, the explicit modeling of multiple objectives leads to better pricing solutions, which have the potential to guide pricing decisions for the HSR operators.


2012 ◽  
Vol 433-440 ◽  
pp. 2808-2816
Author(s):  
Jian Jin Zheng ◽  
You Shen Xia

This paper presents a new interactive neural network for solving constrained multi-objective optimization problems. The constrained multi-objective optimization problem is reformulated into two constrained single objective optimization problems and two neural networks are designed to obtain the optimal weight and the optimal solution of the two optimization problems respectively. The proposed algorithm has a low computational complexity and is easy to be implemented. Moreover, the proposed algorithm is well applied to the design of digital filters. Computed results illustrate the good performance of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document