scholarly journals EDITORIAL

2021 ◽  
Vol 20 (3) ◽  
pp. 02
Author(s):  
Silvio Aparecido Verdério Júnior

The editorial of Thermal Engineering of this issue continues the discussion on scientific research needs in vital areas in which thermal engineering has important participation. The main goal is to motivate the readers, within their specialties, to identify possible subjects for their future research. Natural Convection is present in the most diverse applications of Thermal Engineering, such as controlling and reducing temperatures in electronic systems, reducing the thermal efficiency of cooling in machining processes by the Leidenfrost effect and even in biological systems. With the increasing technological evolution and the development of industrial automation, microelectronics, quantum computing, signal processing, mobile telephony, etc., transmission systems operate increasingly with smaller spacing and higher integration rates between components, with greater power density and heat generation. As a result, there is a growing demand for cooling systems with greater safety, reliability, and efficiency. Therefore, natural convection cooling systems are viable alternatives due to their characteristics of: (A) protection and safety of the transmission system, especially in cases of mechanical and/or electrical failures of the forced cooling system; (B) high reliability and safety of operation; (C) low maintenance costs and (D) no noise. However, due to their low thermal efficiency, such cooling systems are still limited to applications with the low power density and/or combined with forced convection cooling systems. In this sense, the natural convection area is increasingly being researched to create and enable even smaller and more robust high power density transmission systems, with greater economic feasibility (lower costs of acquisition, manufacturing, and maintenance) and exclusively refrigerated (or with minimal use of forced cooling components) by natural convection; all without reducing the efficiency or reliability of these systems. One of the main technologies for thermal optimization of cooling systems researched is the inclusion of geometric surface modifications, through fins (extended surfaces) or corrugated surfaces. The use of corrugated surfaces has been gaining more space in the academic community and industry, standing out for: (A) increasing the area of exposure to the heated surface and the transfer of energy to the circulating fluid; (B) induce changes in the flow in the vicinity of the heated surface, such as the formation of vortices, recirculations, and zones of rarefaction and stagnation; and (C) anticipate and facilitate the flow transition process for the turbulent regime. The study of natural convection – in its most diverse applications and areas of theoretical, applied, and experimental investigation – has been widely explored by Thermal Engineering, arousing more and more the academic community's interest and motivating further research in this area. The mission of Thermal Engineering is to document the scientific progress in areas related to thermal engineering (e.g., energy, oil and renewable fuels). We are confident that we will continue to receive articles’ submissions that contribute to the progress of science. Sílvio Aparecido Verdério JúniorProfessor of Mechanical Engineering

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Vipin Yadav ◽  
Keshav Kant

The analytical solution for a vertical heated plate subjected to conjugate heat transfer due to natural convection at the surface and conduction below is presented. The heated surface is split into two regions; the uniform heat flux region toward upstream and remaining fraction as the uniform wall temperature region. The fractional areas under the two regions are considered variable. Adopting thermally thin wall regime approximation, the possible solutions were investigated and found to satisfactorily deal with longitudinal conduction and temperature variation in the transverse direction. A test setup was developed and the experiments were conducted to obtain relevant data for comparison with the analytical solutions. The ranges for Rayleigh number and heat conduction parameter (α) during various test conditions were 2×108–6×108, and 0.001–1, respectively. The limiting solutions for stipulated conditions are analyzed and compared with experimental data. Reasonable agreement is observed between the experimental and analytical results.


2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Subhashish Dasgupta ◽  
Abhishek Gupta

Abstract Flow acceleration by imposing flow channelization structures like chimneys and/or solid barriers to improve natural convection cooling in pure fluids, is a well-known technique and a thoroughly investigated topic in thermal engineering. However, accelerating flow through porous media, by using such a passive technique, is challenging due to restriction imposed by the solid matrix to the erection of such structures. This study is a unique investigation into a passive method to accelerate flow in natural convection cooling through a bottom-enclosed porous medium with a vertical heated structure at the center, a configuration that is commonly encountered in industry. The porous domain is divided into distinct zones varying in porosity while retaining the average porosity of the original system, to ensure enough structural stability to the vertical heating element. Employing computational fluid dynamics (CFD) analyses, the study shows that the method has the potential to significantly improve natural convection cooling by accelerating flow in tall porous structures while at the same time improves mechanical stability of such structures.


1998 ◽  
Vol 120 (4) ◽  
pp. 840-857 ◽  
Author(s):  
M. P. Dyko ◽  
K. Vafai

A heightened awareness of the importance of natural convective cooling as a driving factor in design and thermal management of aircraft braking systems has emerged in recent years. As a result, increased attention is being devoted to understanding the buoyancy-driven flow and heat transfer occurring within the complex air passageways formed by the wheel and brake components, including the interaction of the internal and external flow fields. Through application of contemporary computational methods in conjunction with thorough experimentation, robust numerical simulations of these three-dimensional processes have been developed and validated. This has provided insight into the fundamental physical mechanisms underlying the flow and yielded the tools necessary for efficient optimization of the cooling process to improve overall thermal performance. In the present work, a brief overview of aircraft brake thermal considerations and formulation of the convection cooling problem are provided. This is followed by a review of studies of natural convection within closed and open-ended annuli and the closely related investigation of inboard and outboard subdomains of the braking system. Relevant studies of natural convection in open rectangular cavities are also discussed. Both experimental and numerical results obtained to date are addressed, with emphasis given to the characteristics of the flow field and the effects of changes in geometric parameters on flow and heat transfer. Findings of a concurrent numerical and experimental investigation of natural convection within the wheel and brake assembly are presented. These results provide, for the first time, a description of the three-dimensional aircraft braking system cooling flow field.


1981 ◽  
Vol 122 ◽  
pp. 53-66 ◽  
Author(s):  
H. Abdurrachim ◽  
F. Karouta ◽  
M. Daguenet ◽  
P. Dumargue

Volume 4 ◽  
2004 ◽  
Author(s):  
Jivtesh Garg ◽  
Mehmet Arik ◽  
Stanton Weaver ◽  
Seyed Saddoughi

Micro fluidics devices are conventionally used for boundary layer control in many aerospace applications. Synthetic Jets are intense small scale turbulent jets formed from entrainment and expulsion of the fluid in which they are embedded. The idea of using synthetic jets in confined electronic cooling applications started in late 1990s. These micro fluidic devices offer very efficient, high magnitude direct air-cooling on the heated surface. A proprietary synthetic jet designed in General Electric Company was able to provide a maximum air velocity of 90 m/s from a 1.2 mm hydraulic diameter rectangular orifice. An experimental study for determining the thermal performance of a meso scale synthetic jet was carried out. The synthetic jets are driven by a time harmonic signal. During the experiments, the operating frequency for jets was set between 3 and 4.5 kHz. The resonance frequency for a particular jet was determined through the effect on the exit velocity magnitude. An infrared thermal imaging technique was used to acquire fine scale temperature measurements. A square heater with a surface area of 156 mm2 was used to mimic the hot component and extensive temperature maps were obtained. The parameters varied during the experiments were jet location, driving jet voltage, driving jet frequency and heater power. The output parameters were point wise temperatures (pixel size = 30 μm), and heat transfer enhancement over natural convection. A maximum of approximately 8 times enhancement over natural convection heat transfer was measured. The maximum coefficient of cooling performance obtained was approximately 6.6 due to the low power consumption of the synthetic jets.


2021 ◽  
Vol 20 (3) ◽  
pp. 37
Author(s):  
S. A. Verdério Júnior ◽  
V. L. Scalon ◽  
S. R. Oliveira ◽  
P. C. Mioralli ◽  
E. Avellone

Natural convection heat transfer is present in the most diverse applications of Thermal Engineering, such as in electronic equipment, transmission lines, cooling coils, biological systems, etc. The correct physical-mathematical modeling of this phenomenon is crucial in the applied understanding of its fundamentals and the design of thermal systems and related technologies. Dimensionless analyses can be applied in the study of flows to reduce geometric and experimental dependence and facilitate the modeling process and understanding of the main influence physical parameters; besides being used in creating models and prototypes. This work presents a methodology for dimensionless physical-mathematical modeling of natural convection turbulent flows over isothermal plates, located in an “infinite” open environment. A consolidated dimensionless physical-mathematical model was defined for the studied problem situation. The physical influence of the dimensionless numbers of Grashof, Prandtl, and Turbulent Prandtl was demonstrated. The use of the Theory of Dimensional Analysis and Similarity and its application as a tool and numerical device in the process of building and simplifying CFD simulations were discussed.


Author(s):  
Teresa B. Hoberg ◽  
Kenshiro Muramatsu ◽  
Erica M. Cherry ◽  
John K. Eaton

Open-cell metal foams are of interest for a variety of thermal engineering applications because of their high surface-to-volume ratio and high convective heat transfer coefficients relative to conventional fins. The tortuous flow path through the foam promotes rapid transverse mixing, a fact that is important in heat exchanger applications. Transverse mixing acts to spread heat away from a heated surface, bringing cooler fluid to the foam elements that are in direct contact with the surface. Heat is also spread by conduction in the foam ligaments. The present work addresses fully-coupled thermal dispersion in a metal foam. Dispersion of the thermal wake of a line source was measured. A conjugate heat transfer model was developed which showed good agreement with the data. The validated model was used to examine the complementary effects of the mechanical dispersion, molecular diffusion in the gas, and conduction in the solid.


Sign in / Sign up

Export Citation Format

Share Document