scholarly journals Experimental Study of Effects of Coflow Air and Partial Premixing on Liquid Petroleum Gas Flames

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
R. Sreenivasan ◽  
Sumit Kumar Koli ◽  
Vasudevan Raghavan

Investigation of the influence of coflow and partial air premixing on liquid petroleum gas (LPG) flames in a lab-scale co-flow burner is presented. Primary air is supplied along with LPG in the inner core, and secondary air is supplied through the annulus region of the burner. Digital images are analyzed to study the flame shape, color, height, radius, and qualitative laminar flame speed. Concentrations of product gases and emission species are measured using a digital gas analyzer. Results indicate that in a dual air stream configuration, the partial premixing is optimum at % primary air value of around 45%.

Fuel ◽  
2009 ◽  
Vol 88 (10) ◽  
pp. 1858-1863 ◽  
Author(s):  
Chen Dong ◽  
Qulan Zhou ◽  
Qinxin Zhao ◽  
Yaqing Zhang ◽  
Tongmo Xu ◽  
...  

Author(s):  
B. Zhang ◽  
C. Dong ◽  
Q. Zhou ◽  
X. Chen ◽  
P. J. Culligan ◽  
...  

Author(s):  
Nikolaos Papafilippou ◽  
Muhammad Aqib Chishty ◽  
Richard Bart Gebart

AbstractGas turbines for power generation are optimised to run with fossil fuels but as a response to tighter pollutant regulations and to enable the use of renewable fuels there is a great interest in improving fuel flexibility. One interesting renewable fuel is syngas from biomass gasification but its properties vary depending on the feedstock and gasification principle, and are significantly different from conventional fuels. This paper aims to give an overview of the differences in combustion behaviour by comparing numerical solutions with methane and several different synthesis gas compositions. The TECFLAM swirl burner geometry, which is designed to be representative of common gas turbine burners, was selected for comparison. The advantage with this geometry is that detailed experimental measurements with methane are publicly available. A two-stage approach was employed with development and validation of an advanced CFD model against experimental data for methane combustion followed by simulations with four syngas mixtures. The validated model was used to compare the flame shape and other characteristics of the flow between methane, 40% hydrogen enriched methane and four typical syngas compositions. It was found that the syngas cases experience lower swirl intensity due to high axial velocities that weakens the inner recirculation zone. Moreover, the higher laminar flame speed of the syngas cases has a strong effect on the flame front shape by bending it away from the axial direction, by making it shorter and by increasing the curvature of the flame front. A hypothesis that the flame shape and position is primarily governed by the laminar flame speed is supported by the almost identical flame shapes for bark powder syngas and 40% hydrogen enriched methane. These gas mixtures have almost identical laminar flame speeds for the relevant equivalence ratios but the heating value of the syngas is more than a factor of 3 smaller than that of the hydrogen enriched methane. The syngas compositions used are representative of practical gasification processes and biomass feedstocks. The demonstrated strong correlation between laminar flame speed and flame shape could be used as a rule of thumb to quickly judge whether the flame might come in contact with the structure or in other ways be detrimental to the function of the combustion system.


2010 ◽  
Vol 4 (4) ◽  
pp. 417-422 ◽  
Author(s):  
Chen Dong ◽  
Qulan Zhou ◽  
Xiaoguang Zhang ◽  
Qinxin Zhao ◽  
Tongmo Xu ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 36642-36655 ◽  
Author(s):  
Rong Zhang ◽  
Zhenhua Hao ◽  
Zhiyu Wang ◽  
Xiaodong Huo ◽  
Junguo Li ◽  
...  

This paper investigated the distribution of secondary air after injection into a multi-stage conversion fluidized bed (MFB) cold model.


Author(s):  
Pablo Diaz Gomez Maqueo ◽  
Philippe Versailles ◽  
Gilles Bourque ◽  
Jeffrey M. Bergthorson

This study investigates the increase in methane and biogas flame reactivity enabled by the addition of syngas produced through fuel reforming. To isolate thermodynamic and chemical effects on the reactivity of the mixture, the burner simulations are performed with a constant adiabatic flame temperature of 1800 K. Compositions and temperatures are calculated with the chemical equilibrium solver of CANTERA® and the reactivity of the mixture is quantified using the adiabatic, freely-propagating premixed flame, and perfectly-stirred reactors of the CHEMKIN-Pro® software package. The results show that the produced syngas has a content of up to 30 % H2 with a temperature up to 950 K. When added to the fuel, it increases the laminar flame speed while maintaining a burning temperature of 1800 K. Even when cooled to 300 K, the laminar flame speed increases up to 30 % from the baseline of pure biogas. Hence, a system can be developed that controls and improves biogas flame stability under low reactivity conditions by varying the fraction of added syngas to the mixture. This motivates future experimental work on reforming technologies coupled with gas turbine exhausts to validate this numerical work.


Sign in / Sign up

Export Citation Format

Share Document