scholarly journals Multi Objective Optimization Based Feature Selection Algorithms for Big Data Analytics: A Review

Author(s):  
Aakriti Shukla ◽  
◽  
Dr Damodar Prasad Tiwari ◽  

Dimension reduction or feature selection is thought to be the backbone of big data applications in order to improve performance. Many scholars have shifted their attention in recent years to data science and analysis for real-time applications using big data integration. It takes a long time for humans to interact with big data. As a result, while handling high workload in a distributed system, it is necessary to make feature selection elastic and scalable. In this study, a survey of alternative optimizing techniques for feature selection are presented, as well as an analytical result analysis of their limits. This study contributes to the development of a method for improving the efficiency of feature selection in big complicated data sets.

Author(s):  
Aakriti Shukla ◽  
◽  
Dr Damodar Prasad Tiwari ◽  

Dimension reduction or feature selection is thought to be the backbone of big data applications in order to improve performance. Many scholars have shifted their attention in recent years to data science and analysis for real-time applications using big data integration. It takes a long time for humans to interact with big data. As a result, while handling high workload in a distributed system, it is necessary to make feature selection elastic and scalable. In this study, a survey of alternative optimizing techniques for feature selection are presented, as well as an analytical result analysis of their limits. This study contributes to the development of a method for improving the efficiency of feature selection in big complicated data sets.


2018 ◽  
Vol 20 (1) ◽  
Author(s):  
Tiko Iyamu

Background: Over the years, big data analytics has been statically carried out in a programmed way, which does not allow for translation of data sets from a subjective perspective. This approach affects an understanding of why and how data sets manifest themselves into various forms in the way that they do. This has a negative impact on the accuracy, redundancy and usefulness of data sets, which in turn affects the value of operations and the competitive effectiveness of an organisation. Also, the current single approach lacks a detailed examination of data sets, which big data deserve in order to improve purposefulness and usefulness.Objective: The purpose of this study was to propose a multilevel approach to big data analysis. This includes examining how a sociotechnical theory, the actor network theory (ANT), can be complementarily used with analytic tools for big data analysis.Method: In the study, the qualitative methods were employed from the interpretivist approach perspective.Results: From the findings, a framework that offers big data analytics at two levels, micro- (strategic) and macro- (operational) levels, was developed. Based on the framework, a model was developed, which can be used to guide the analysis of heterogeneous data sets that exist within networks.Conclusion: The multilevel approach ensures a fully detailed analysis, which is intended to increase accuracy, reduce redundancy and put the manipulation and manifestation of data sets into perspectives for improved organisations’ competitiveness.


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202674 ◽  
Author(s):  
Simeone Marino ◽  
Jiachen Xu ◽  
Yi Zhao ◽  
Nina Zhou ◽  
Yiwang Zhou ◽  
...  

Web Services ◽  
2019 ◽  
pp. 1430-1443
Author(s):  
Louise Leenen ◽  
Thomas Meyer

The Governments, military forces and other organisations responsible for cybersecurity deal with vast amounts of data that has to be understood in order to lead to intelligent decision making. Due to the vast amounts of information pertinent to cybersecurity, automation is required for processing and decision making, specifically to present advance warning of possible threats. The ability to detect patterns in vast data sets, and being able to understanding the significance of detected patterns are essential in the cyber defence domain. Big data technologies supported by semantic technologies can improve cybersecurity, and thus cyber defence by providing support for the processing and understanding of the huge amounts of information in the cyber environment. The term big data analytics refers to advanced analytic techniques such as machine learning, predictive analysis, and other intelligent processing techniques applied to large data sets that contain different data types. The purpose is to detect patterns, correlations, trends and other useful information. Semantic technologies is a knowledge representation paradigm where the meaning of data is encoded separately from the data itself. The use of semantic technologies such as logic-based systems to support decision making is becoming increasingly popular. However, most automated systems are currently based on syntactic rules. These rules are generally not sophisticated enough to deal with the complexity of decisions required to be made. The incorporation of semantic information allows for increased understanding and sophistication in cyber defence systems. This paper argues that both big data analytics and semantic technologies are necessary to provide counter measures against cyber threats. An overview of the use of semantic technologies and big data technologies in cyber defence is provided, and important areas for future research in the combined domains are discussed.


Web Services ◽  
2019 ◽  
pp. 1301-1329
Author(s):  
Suren Behari ◽  
Aileen Cater-Steel ◽  
Jeffrey Soar

The chapter discusses how Financial Services organizations can take advantage of Big Data analysis for disruptive innovation through examination of a case study in the financial services industry. Popular tools for Big Data Analysis are discussed and the challenges of big data are explored as well as how these challenges can be met. The work of Hayes-Roth in Valued Information at the Right Time (VIRT) and how it applies to the case study is examined. Boyd's model of Observe, Orient, Decide, and Act (OODA) is explained in relation to disruptive innovation in financial services. Future trends in big data analysis in the financial services domain are explored.


Web Services ◽  
2019 ◽  
pp. 1262-1281
Author(s):  
Chitresh Verma ◽  
Rajiv Pandey

Big Data Analytics is a major branch of data science where the huge amount raw data is processed to get insight for relevant business processes. Integration of big data, its analytics along with Service Oriented Architecture (SOA) is need of the hour, such integration shall render reusability and scalability to various business processes. This chapter explains the concept of Big Data and Big Data Analytics at its implementation level. The Chapter further describes Hadoop and its technologies which are one of the popular frameworks for Big Data Analytics and envisage integrating SOA with relevant case studies. The chapter demonstrates the SOA integration with Big Data through, two case studies of two different scenarios are incorporated that integrates real world implementation with theory and enables better understanding of the industrial level processes and practices.


Web Services ◽  
2019 ◽  
pp. 953-978
Author(s):  
Krishnan Umachandran ◽  
Debra Sharon Ferdinand-James

Continued technological advancements of the 21st Century afford massive data generation in sectors of our economy to include the domains of agriculture, manufacturing, and education. However, harnessing such large-scale data, using modern technologies for effective decision-making appears to be an evolving science that requires knowledge of Big Data management and analytics. Big data in agriculture, manufacturing, and education are varied such as voluminous text, images, and graphs. Applying Big data science techniques (e.g., functional algorithms) for extracting intelligence data affords decision markers quick response to productivity, market resilience, and student enrollment challenges in today's unpredictable markets. This chapter serves to employ data science for potential solutions to Big Data applications in the sectors of agriculture, manufacturing and education to a lesser extent, using modern technological tools such as Hadoop, Hive, Sqoop, and MongoDB.


Sign in / Sign up

Export Citation Format

Share Document