scholarly journals Micro-environmental changes induced by shape and size of forest openings: effects on Austrocedrus chilensis and Nothofagus dombeyi seedlings performance in a Pinus contorta plantation of Patagonia, Argentina

2016 ◽  
Vol 25 (3) ◽  
pp. e075
Author(s):  
Leticia Pafundi ◽  
Maria Florencia Urretavizcaya ◽  
Guillermo Emilio Defosse

Aim of the study: to analyze, within a Pinus contorta plantation, the effects of artificially created small rectangular and small medium circular canopy gaps on: i) photosynthetic active radiation (PAR), and soil temperature and moisture, and ii) survival and growth of planted Austrocedrus chilensis and Nothofagus dombeyi seedlings, species which formerly composed the natural forest of the area.Study area: A 2 ha stand of a Pinus contorta stand in Los Alerces National Park, Argentina (42°43’S, 71°43’W, 490 m.a.s.l.). Material and methods: The Pinus contorta stand was 25 yr old, 22 m height and 26 cm DBH, presenting 1000 trees ha-1 of density and 53 m2 ha-1 of basal area. In 2009, rectangular and circular gaps were created within the stand and then seedlings were planted. During two growing seasons (2010-2011 and 2011-2012), PAR, soil temperature and moisture were measured in gaps and understory (control), and seedling survival and growth in gaps.Main results: During both seasons, soil temperature did not differ among gaps and control, whereas PAR and soil moisture were lower in control than in gaps. Seedling survival was high in all gaps regardless of species and season. Seedlings showed higher diameter growth in rectangular than in circular gaps.Research highlights: Austrocedrus chilensis and N. dombeyi seedlings survival is high and their growth slightly affected, when planted in differently-sized canopy gaps within a Pinus contorta plantation in Patagonia. However, other gap sizes and stand densities should be tested before recommending which one shows better results for reconverting monocultures into former native forests.Keywords: planted seedlings; gap structure; photosynthetic active radiation; soil temperature; soil moisture.Abbreviations used: PAR (Photosynthetic Active Radiation); DBH (Diameter at Breast Height); INTA (Argentinean Institute of Agricultural Technology); IFONA (Argentinean Forest Institute).

1992 ◽  
Vol 335 (1275) ◽  
pp. 369-378 ◽  

The theory of gap regeneration dynamics proposes that different species of tree partition canopy gaps because they are preferentially adapted to a particular gap size class. A variety of gap sizes would therefore favour the regeneration of a range of species. The theory has been used to explain the extraordinarily high tree species diversity of tropical rain forests. A test was mounted in lowland evergreen dipterocarp rain forest in the Danum Valley, Sabah, East Malaysia by the creation of ten, artificial canopy gaps ranging in size from 10 m 2 to 1500 m 2 (6 to 30% canopy openness). The responses of established populations of seedlings of three dipterocarp species ( Hopea nervosa , Parashorea malaanonan and Shorea johorensis ) with contrasting silvicultural reputations were monitored for 40 months in these gaps and under closed forest. There were significant differences in survival and growth under closed forest between these three species. However, in gaps, the most important determinant of seedling survival and growth was seedling size at the time of gap creation, regardless of species. An ability to persist for long periods under closed forest and slowly accumulate growth may bestow an enormous size advantage on seedlings when gaps occur. Generalizations on the regeneration dynamics of dipterocarp rain forests need to be modified in the light of this result. Further observations for several years are important to see whether forest recovery eventually converges on predictions from the original paradigm.


2021 ◽  
Vol 494 ◽  
pp. 119337
Author(s):  
Marina Caselli ◽  
Gabriel Ángel Loguercio ◽  
María Florencia Urretavizcaya ◽  
Guillermo Emilio Defossé

2021 ◽  
Author(s):  
Kristen Manies ◽  
Jennifer Harden ◽  
William Cable ◽  
Jamie Hollingsworth

Sign in / Sign up

Export Citation Format

Share Document