scholarly journals The Impact of Lengths of Time Series on the Accuracy of the ARIMA Forecasting

2019 ◽  
Vol 4 (3) ◽  
pp. 58
Author(s):  
Lu Qin ◽  
Kyle Shanks ◽  
Glenn Allen Phillips ◽  
Daphne Bernard

The Autoregressive Integrated Moving Average model (ARIMA) is a popular time-series model used to predict future trends in economics, energy markets, and stock markets. It has not been widely applied to enrollment forecasting in higher education. The accuracy of the ARIMA model heavily relies on the length of time series. Researchers and practitioners often utilize the most recent - to -years of historical data to predict future enrollment; however, the accuracy of enrollment projection under different lengths of time series has never been investigated and compared. A simulation and an empirical study were conducted to thoroughly investigate the accuracy of ARIMA forecasting under four different lengths of time series. When the ARIMA model completely captured the historical changing trajectories, it provided the most accurate predictions of student enrollment with 20-years of historical data and had the lowest forecasting accuracy with the shortest time series. The results of this paper contribute as a reference to studies in the enrollment projection and time-series forecasting. It provides a practical impact on enrollment strategies, budges plans, and financial aid policies at colleges and institutions across countries.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yi-Hui Pang ◽  
Hong-Bo Wang ◽  
Jian-Jian Zhao ◽  
De-Yong Shang

Hydraulic support plays a key role in ground control of longwall mining. The smart prediction methods of support load are important for achieving intelligent mining. In this paper, the hydraulic support load data is decomposed into trend term, cycle term, and residual term, and it is found that the data has clear trend and period features, which can be called time series data. Based on the autoregression theory and weighted moving average method, the time series model is built to analyze the load data and predict its evolution trend, and the prediction accuracy of the sliding window model, ARIMA (Autoregressive Integrated Moving Average) model, and SARIMA (Seasonal Autoregressive Integrated Moving Average) model to the hydraulic support load under different parameters are evaluated, respectively. The results of single-point and multipoint prediction test with various sliding window values indicate that the sliding window method has no advantage in predicting the trend of the support load. The ARIMA model shows a better short-term trend prediction than the sliding window model. To some extent, increasing the length of the autoregressive term can improve the long-term prediction accuracy of the model, but it also increases the sensitivity of the model to support load fluctuation, and it is still difficult to predict the load trend in one support cycle. The SARIMA model has better prediction results than the sliding window model and the ARIMA model, which reveals the load evolution trend accurately during the whole support cycle. However, there are many external factors affecting the support load, such as overburden properties, hydraulic support moving speed, and worker’s operation. The smarter model of SARIMA considering these factors should be developed to be more suitable in predicting the hydraulic support load.


2018 ◽  
Vol 12 (11) ◽  
pp. 181 ◽  
Author(s):  
S. AL Wadi ◽  
Mohammad Almasarweh ◽  
Ahmed Atallah Alsaraireh

Closed price forecasting plays a main rule in finance and economics which has encouraged the researchers to introduce a fit model in forecasting accuracy. The autoregressive integrated moving average (ARIMA) model has developed and implemented in many applications. Therefore, in this article the researchers utilize ARIMA model in predicting the closed time series data which have been collected from Amman Stock Exchange (ASE) from Jan. 2010 to Jan. 2018. As a result this article shows that the ARIMA model has significant results for short-term prediction. Therefore, these results will be helpful for the investments.


2018 ◽  
Vol 12 (11) ◽  
pp. 309 ◽  
Author(s):  
Mohammad Almasarweh ◽  
S. AL Wadi

Banking time series forecasting gains a main rule in finance and economics which has encouraged the researchers to introduce a fit models in forecasting accuracy. In this paper, the researchers present the advantages of the autoregressive integrated moving average (ARIMA) model forecasting accuracy. Banking data from Amman stock market (ASE) in Jordan was selected as a tool to show the ability of ARIMA in forecasting banking data. Therefore, Daily data from 1993 until 2017 is used for this study. As a result this article shows that the ARIMA model has significant results for short-term prediction. Therefore, these results will be helpful for the investments.


2019 ◽  
Vol 4 (2) ◽  
pp. 1-20
Author(s):  
Surya Bahadur Rana

This study attempts to test the ARIMA model and forecast annual time series of GDP in Nepal from mid-July, 1960 to mid-July, 2018. The annual time series on GDP used in this study consists of total 59 observations. Out of them, three years’ data from mid-July 2016 to mid-July 2018 have been used for in-sample forecasting and evaluation. The study uses univariate Box-Jenkins ARIMA modelling process to identify the best fitted model that describes the sample data set. The study examines a number of ARIMA family models and recommends ARIMA (0,1,2) as the most appropriate model that best describes the annual GDP series of the sampled period. The ARIMA (0, 1, 2) model incorporates zero lag order for autoregression, integrated with 2 lag order for moving average model using first difference operator. The ARIMA model forecasts documented in this study are not significantly different from actual because the actual annual GDP series observed in forecast period fall within 95 per cent confidence interval of estimates. Hence, ARIMA (0,1,2) model can best capture the GDP movement in Nepal for the sample period.


Author(s):  
Richard McCleary ◽  
David McDowall ◽  
Bradley J. Bartos

The general AutoRegressive Integrated Moving Average (ARIMA) model can be written as the sum of noise and exogenous components. If an exogenous impact is trivially small, the noise component can be identified with the conventional modeling strategy. If the impact is nontrivial or unknown, the sample AutoCorrelation Function (ACF) will be distorted in unknown ways. Although this problem can be solved most simply when the outcome of interest time series is long and well-behaved, these time series are unfortunately uncommon. The preferred alternative requires that the structure of the intervention is known, allowing the noise function to be identified from the residualized time series. Although few substantive theories specify the “true” structure of the intervention, most specify the dichotomous onset and duration of an impact. Chapter 5 describes this strategy for building an ARIMA intervention model and demonstrates its application to example interventions with abrupt and permanent, gradually accruing, gradually decaying, and complex impacts.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250149
Author(s):  
Fuad A. Awwad ◽  
Moataz A. Mohamoud ◽  
Mohamed R. Abonazel

The novel coronavirus COVID-19 is spreading across the globe. By 30 Sep 2020, the World Health Organization (WHO) announced that the number of cases worldwide had reached 34 million with more than one million deaths. The Kingdom of Saudi Arabia (KSA) registered the first case of COVID-19 on 2 Mar 2020. Since then, the number of infections has been increasing gradually on a daily basis. On 20 Sep 2020, the KSA reported 334,605 cases, with 319,154 recoveries and 4,768 deaths. The KSA has taken several measures to control the spread of COVID-19, especially during the Umrah and Hajj events of 1441, including stopping Umrah and performing this year’s Hajj in reduced numbers from within the Kingdom, and imposing a curfew on the cities of the Kingdom from 23 Mar to 28 May 2020. In this article, two statistical models were used to measure the impact of the curfew on the spread of COVID-19 in KSA. The two models are Autoregressive Integrated Moving Average (ARIMA) model and Spatial Time-Autoregressive Integrated Moving Average (STARIMA) model. We used the data obtained from 31 May to 11 October 2020 to assess the model of STARIMA for the COVID-19 confirmation cases in (Makkah, Jeddah, and Taif) in KSA. The results show that STARIMA models are more reliable in forecasting future epidemics of COVID-19 than ARIMA models. We demonstrated the preference of STARIMA models over ARIMA models during the period in which the curfew was lifted.


Author(s):  
J. Kisabuli ◽  
J. Ong'ala ◽  
E. Odero

Infant mortality is an important marker of the overall society health. The 3rd goal of the Sustainable Development Goals aims at reducing infant deaths that occur due to preventable causes by 2030. Due to increased infant mortality the Kenyan government introduced Free Maternal Health Care as an intervention towards reducing infant mortality through elimination of the cost burden of accessing medical care by the mother and the infant. The study examines the impact of Free Maternal Health Care on infant mortality using Intervention time series analysis particularly the intervention Box Jenkins ARIMA (Autoregressive Integrated Moving Average) model. There was significant support that Free Maternal Health Care had a significant impact on infant mortality which was estimated to be a decrease of 10.15% in infant deaths per month.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


Sign in / Sign up

Export Citation Format

Share Document