Specificity and sensitivity of biotinidase activity measured from dried blood spot by colorimetric method

2019 ◽  
Vol 26 (10) ◽  
pp. 2306
Author(s):  
Halil Kazanasmaz ◽  
Nurgul Atas ◽  
Meryem Karaca
2015 ◽  
Vol 87 (20) ◽  
pp. 10573-10578 ◽  
Author(s):  
Eszter Szabó ◽  
Ildikó Szatmári ◽  
László Szőnyi ◽  
Zoltán Takáts

1987 ◽  
Vol 152 (4) ◽  
pp. 339-346 ◽  
Author(s):  
AKIHIRO YAMAGUCHI ◽  
MASARU FUKUSHI ◽  
OSAMU ARAI ◽  
YOSHIKIYO MIZUSHIMA ◽  
YASUMASA SATO ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 26 ◽  
Author(s):  
Stuart J. Moat ◽  
Roanna S. George ◽  
Rachel S. Carling

Monitoring of patients with inherited metabolic disorders (IMDs) using dried blood spot (DBS) specimens has been routinely used since the inception of newborn screening (NBS) for phenylketonuria in the 1960s. The introduction of flow injection analysis tandem mass spectrometry (FIA–MS/MS) in the 1990s facilitated the expansion of NBS for IMDs. This has led to increased identification of patients who require biochemical monitoring. Monitoring of IMD patients using DBS specimens is widely favoured due to the convenience of collecting blood from a finger prick onto filter paper devices in the patient’s home, which can then be mailed directly to the laboratory. Ideally, analytical methodologies with a short analysis time and high sample throughput are required to enable results to be communicated to patients in a timely manner, allowing prompt therapy adjustment. The development of ultra-performance liquid chromatography (UPLC–MS/MS), means that metabolic laboratories now have the capability to routinely analyse DBS specimens with superior specificity and sensitivity. This advancement in analytical technology has led to the development of numerous assays to detect analytes at low concentrations (pmol/L) in DBS specimens that can be used to monitor IMD patients. In this review, we discuss the pre-analytical, analytical and post-analytical variables that may affect the final test result obtained using DBS specimens used for monitoring of patients with an IMD.


Bioanalysis ◽  
2021 ◽  
Author(s):  
Leo Maritz ◽  
Nicholas J Woudberg ◽  
Amber C Bennett ◽  
Andreia Soares ◽  
Florian Lapierre ◽  
...  

Aim: Serological assays for the detection of anti-SARS coronavirus-2 (SARS-CoV-2) antibodies are essential to the response to the global pandemic. A ligand binding-based serological assay was validated for the semiquantitative detection of IgG, IgM, IgA and neutralizing antibodies (nAb) against SARS-CoV-2 in serum. Results: The assay demonstrated high levels of diagnostic specificity and sensitivity (85–99% for all analytes). Serum IgG, IgM, IgA and nAb correlated positively (R2 = 0.937, R2 = 0.839, R2 = 0.939 and R2 = 0.501, p < 0.001, respectively) with those measured in dried blood spot samples collected using the hemaPEN® microsampling device (Trajan Scientific and Medical, Victoria, Australia). In vitro SARS-CoV-2 pseudotype neutralization correlated positively with the solid phase nAb signals in convalescent donors (R2 = 0.458, p < 0.05). Conclusion: The assay is applicable in efficacy studies, infection monitoring and postmarketing surveillance following vaccine rollout.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1532
Author(s):  
Jeffrey Yim ◽  
Olivia Yau ◽  
Darwin F. Yeung ◽  
Teresa S. M. Tsang

Fabry disease (FD) is an X-linked lysosomal storage disorder caused by mutations in the galactosidase A (GLA) gene that result in deficient galactosidase A enzyme and subsequent accumulation of glycosphingolipids throughout the body. The result is a multi-system disorder characterized by cutaneous, corneal, cardiac, renal, and neurological manifestations. Increased left ventricular wall thickness represents the predominant cardiac manifestation of FD. As the disease progresses, patients may develop arrhythmias, advanced conduction abnormalities, and heart failure. Cardiac biomarkers, point-of-care dried blood spot testing, and advanced imaging modalities including echocardiography with strain imaging and magnetic resonance imaging (MRI) with T1 mapping now allow us to detect Fabry cardiomyopathy much more effectively than in the past. While enzyme replacement therapy (ERT) has been the mainstay of treatment, several promising therapies are now in development, making early diagnosis of FD even more crucial. Ongoing initiatives involving artificial intelligence (AI)-empowered interpretation of echocardiographic images, point-of-care dried blood spot testing in the echocardiography laboratory, and widespread dissemination of point-of-care ultrasound devices to community practices to promote screening may lead to more timely diagnosis of FD. Fabry disease should no longer be considered a rare, untreatable disease, but one that can be effectively identified and treated at an early stage before the development of irreversible end-organ damage.


2021 ◽  
Vol 136 ◽  
pp. 104739
Author(s):  
Ranya Mulchandani ◽  
Ben Brown ◽  
Tim Brooks ◽  
Amanda Semper ◽  
Nicholas Machin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amelia E. Sancilio ◽  
Richard T. D’Aquila ◽  
Elizabeth M. McNally ◽  
Matthew P. Velez ◽  
Michael G. Ison ◽  
...  

AbstractThe spike protein of SARS-CoV-2 engages the human angiotensin-converting enzyme 2 (ACE2) receptor to enter host cells, and neutralizing antibodies are effective at blocking this interaction to prevent infection. Widespread application of this important marker of protective immunity is limited by logistical and technical challenges associated with live virus methods and venous blood collection. To address this gap, we validated an immunoassay-based method for quantifying neutralization of the spike-ACE2 interaction in a single drop of capillary whole blood, collected on filter paper as a dried blood spot (DBS) sample. Samples are eluted overnight and incubated in the presence of spike antigen and ACE2 in a 96-well solid phase plate. Competitive immunoassay with electrochemiluminescent label is used to quantify neutralizing activity. The following measures of assay performance were evaluated: dilution series of confirmed positive and negative samples, agreement with results from matched DBS-serum samples, analysis of results from DBS samples with known COVID-19 status, and precision (intra-assay percent coefficient of variation; %CV) and reliability (inter-assay; %CV). Dilution series produced the expected pattern of dose–response. Agreement between results from serum and DBS samples was high, with concordance correlation = 0.991. Analysis of three control samples across the measurement range indicated acceptable levels of precision and reliability. Median % surrogate neutralization was 46.9 for PCR confirmed convalescent COVID-19 samples and 0.1 for negative samples. Large-scale testing is important for quantifying neutralizing antibodies that can provide protection against COVID-19 in order to estimate the level of immunity in the general population. DBS provides a minimally-invasive, low cost alternative to venous blood collection, and this scalable immunoassay-based method for quantifying inhibition of the spike-ACE2 interaction can be used as a surrogate for virus-based assays to expand testing across a wide range of settings and populations.


Sign in / Sign up

Export Citation Format

Share Document