Forecasting the Energy Consumption of an Industrial Enterprise Based on the Neural Network Model

2021 ◽  
Vol 23 ◽  
pp. 484-492
Author(s):  
Vasyl Kalinchyk ◽  
Olexandr Meita ◽  
Vitalii Pobigaylo ◽  
Vitalii Kalinchyk ◽  
Danylo Filyanin

This research paper investigates the application of neural network models for forecasting in energy. The results of forecasting the weekly energy consumption of the enterprise according to the model of a multilayer perceptron at different values of neurons and training algorithms are given. The estimation and comparative analysis of models depending on model parameters is made.

Author(s):  
A. Saravanan ◽  
J. Jerald ◽  
A. Delphin Carolina Rani

AbstractThe objective of the paper is to develop a new method to model the manufacturing cost–tolerance and to optimize the tolerance values along with its manufacturing cost. A cost–tolerance relation has a complex nonlinear correlation among them. The property of a neural network makes it possible to model the complex correlation, and the genetic algorithm (GA) is integrated with the best neural network model to optimize the tolerance values. The proposed method used three types of neural network models (multilayer perceptron, backpropagation network, and radial basis function). These network models were developed separately for prismatic and rotational parts. For the construction of network models, part size and tolerance values were used as input neurons. The reference manufacturing cost was assigned as the output neuron. The qualitative production data set was gathered in a workshop and partitioned into three files for training, testing, and validation, respectively. The architecture of the network model was identified based on the best regression coefficient and the root-mean-square-error value. The best network model was integrated into the GA, and the role of genetic operators was also studied. Finally, two case studies from the literature were demonstrated in order to validate the proposed method. A new methodology based on the neural network model enables the design and process planning engineers to propose an intelligent decision irrespective of their experience.


2021 ◽  
Vol 6 (2) ◽  
pp. 128-133
Author(s):  
Ihor Koval ◽  

The problem of finding objects in images using modern computer vision algorithms has been considered. The description of the main types of algorithms and methods for finding objects based on the use of convolutional neural networks has been given. A comparative analysis and modeling of neural network algorithms to solve the problem of finding objects in images has been conducted. The results of testing neural network models with different architectures on data sets VOC2012 and COCO have been presented. The results of the study of the accuracy of recognition depending on different hyperparameters of learning have been analyzed. The change in the value of the time of determining the location of the object depending on the different architectures of the neural network has been investigated.


2020 ◽  
Author(s):  
Wen-Hsien Chang ◽  
Han-Kuei Wu ◽  
Lun-chien Lo ◽  
William W. L. Hsiao ◽  
Hsueh-Ting Chu ◽  
...  

Abstract Background: Traditional Chinese medicine (TCM) describes physiological and pathological changes inside and outside the human body by the application of four methods of diagnosis. One of the four methods, tongue diagnosis, is widely used by TCM physicians, since it allows direct observations that prevent discrepancies in the patient’s history and, as such, provides clinically important, objective evidence. The clinical significance of tongue features has been explored in both TCM and modern medicine. However, TCM physicians may have different interpretations of the features displayed by the same tongue, and therefore intra- and inter-observer agreements are relatively low. If an automated interpretation system could be developed, more consistent results could be obtained, and learning could also be more efficient. This study will apply a recently developed deep learning method to the classification of tongue features, and indicate the regions where the features are located.Methods: A large number of tongue photographs with labeled fissures were used. Transfer learning was conducted using the ImageNet-pretrained ResNet50 model to determine whether tongue fissures were identified on a tongue photograph. Often, the neural network model lacks interpretability, and users cannot understand how the model determines the presence of tongue fissures. Therefore, Gradient-weighted Class Activation Mapping (Grad-CAM) was also applied to directly mark the tongue features on the tongue image. Results: Only 6 epochs were trained in this study and no graphics processing units (GPUs) were used. It took less than 4 minutes for each epoch to be trained. The correct rate for the test set was approximately 70%. After the model training was completed, Grad-CAM was applied to localize tongue fissures in each image. The neural network model not only determined whether tongue fissures existed, but also allowed users to learn about the tongue fissure regions.Conclusions: This study demonstrated how to apply transfer learning using the ImageNet-pretrained ResNet50 model for the identification and localization of tongue fissures and regions. The neural network model built in this study provided interpretability and intuitiveness, (often lacking in general neural network models), and improved the feasibility for clinical application.


2019 ◽  
Vol 8 (4) ◽  
pp. 5023-5031

Forecasting and prediction are based on pattern recognition. It may be a human energy potential increase day today when he grownup a young guy, but afterward, his energy potential going downwards. So, we observed the pattern with the help of neural network models; these are radical bias function (RBP) and back-propagation (BP). Utilizing the neural network model, it also has many classification parts like a deep neural network, feedforward neural network, recurrent neural network, convolutional neural network and many more. In the forecasting or prediction, we have a large amount of data to manage. We trained the data with algorithm and here we also use the neural network models. We used optimization techniques that are inspired by biological swarm. Nowadays, lots of data generate day by day like market, medical, education, automobile, etc. we need recognition of the pattern for prediction of future expectations. That expectation of prediction very helpful and needy to gain profit of human beings. In this work, we use SOM (self-Organized Map), RBF (Radical Bias Function), DNN (Deep Neural Network) and PGO (Plant Grow Optimization). The total data point for the processing used 27500. The evaluation of the performance used standard parameters such as ET, MAE, MSE, RMSE and MI. The proposed algorithm implemented in MATLAB software. The cascaded neural network classifier is the combination of the SOM and RBF neural network models. The SOM neural network model proceeds the task of clustering and RBF neural network model used for prediction.


Author(s):  
Zilin Bian ◽  
Kaan Ozbay

This study aims to develop a neural network model to predict work zone capacity including various uncertainties stemming from traffic and operational conditions. The neural network model is formulated in terms of the number of total lanes, number of open lanes, heavy vehicle percentage, work intensity, and work duration. The data used in this paper are obtained from previous studies published in open literature. To capture the uncertainty of work zone capacity, this paper provides two recent methods that enable neural network models to generate prediction intervals which are determined by mean work zone capacity and prediction standard error. The research first builds a Bayesian neural network model with the application of black-box variational inference (BBVI) technique. The second model is based on a regular artificial neural network with an application of the recently proposed Monte-Carlo dropout technique. Both of the neural network models construct prediction intervals under various confidence levels and provide the coverage rates of the actual work zone capacities. The statistical accuracy (MAPE, MAE, MSE, and RMSE) of the models is then compared with traditional estimation methods in predicted mean work zone capacity. BBVI produces better statistical results than the other three models. Both of the models provide predicted work zone capacity distribution and prediction intervals, whereas traditional models only provide a single estimate.


2020 ◽  
Author(s):  
Wen-Hsien Chang ◽  
Han-Kuei Wu ◽  
Lun-chien Lo ◽  
William W. L. Hsiao ◽  
Hsueh-Ting Chu ◽  
...  

Abstract Background Traditional Chinese medicine (TCM) describes physiological and pathological changes inside and outside the human body by the application of four methods of diagnosis. One of the four methods, tongue diagnosis, is widely used by TCM physicians, since it allows direct observations that prevent discrepancies in the patient’s history and, as such, provides clinically important, objective evidence. The clinical significance of tongue features has been explored in both TCM and modern medicine. However, TCM physicians may have different interpretations of the features displayed by the same tongue, and therefore intra- and inter-observer agreements are relatively low. If an automated interpretation system could be developed, more consistent results could be obtained, and learning could also be more efficient. This study will apply a recently developed deep learning method to the classification of tongue features, and indicate the regions where the features are located. Methods A large number of tongue photographs with labeled fissures were used. Transfer learning was conducted using the ImageNet-pretrained ResNet50 model to determine whether tongue fissures were identified on a tongue photograph. Often, the neural network model lacks interpretability, and users cannot understand how the model determines the presence of tongue fissures. Therefore, Gradient-weighted Class Activation Mapping (Grad-CAM) was also applied to directly mark the tongue features on the tongue image. Results Only 6 epochs were trained in this study and no graphics processing units (GPUs) were used. It took less than 4 minutes for each epoch to be trained. The correct rate for the test set was approximately 70%. After the model training was completed, Grad-CAM was applied to localize tongue fissures in each image. The neural network model not only determined whether tongue fissures existed, but also allowed users to learn about the tongue fissure regions. Conclusions This study demonstrated how to apply transfer learning using the ImageNet-pretrained ResNet50 model for the identification and localization of tongue fissures and regions. The neural network model built in this study provided interpretability and intuitiveness, (often lacking in general neural network models), and improved the feasibility for clinical application.


Author(s):  
Hyun-il Lim

The neural network is an approach of machine learning by training the connected nodes of a model to predict the results of specific problems. The prediction model is trained by using previously collected training data. In training neural network models, overfitting problems can occur from the excessively dependent training of data and the structural problems of the models. In this paper, we analyze the effect of DropConnect for controlling overfitting in neural networks. It is analyzed according to the DropConnect rates and the number of nodes in designing neural networks. The analysis results of this study help to understand the effect of DropConnect in neural networks. To design an effective neural network model, the DropConnect can be applied with appropriate parameters from the understanding of the effect of the DropConnect in neural network models.


2015 ◽  
Vol 10 (3) ◽  
pp. 325-340 ◽  
Author(s):  
Sujeet Kumar Sharma ◽  
Srikrishna Madhumohan Govindaluri ◽  
Said Gattoufi

Purpose – The purpose of this paper is to investigate the quality determinants influencing the adoption of e-government services in Oman and compare the performance of multiple regression and neural network models in identifying the significant factors influencing adoption in Oman. Design/methodology/approach – Primary data concerning service quality determinants and demographic variables were collected using a structured questionnaire survey. The variables selected in the design of the questionnaire were based on an extensive literature review. Factor analysis, multiple linear regression and neural network models were employed to analyze data. Findings – The study found that quality determinants: responsiveness, security, efficiency and reliability are statistically significant predictors of adoption. The neural network model performed better than the regression model in the prediction of e-government services’ adoption and was able to characterize the non-linear relationship of the aforementioned predictors with the adoption of e-government services. Further, the neural network model was able to identify demographic variables as significant predictors. Practical implications – This study highlights the importance of service quality in the adoption of e-government services and suggests that an enhanced focus and investment on improving quality of the design and delivery of e-government services can have a positive impact on the usage of the services, thereby enabling the Oman Government in achieving the governance objectives for which these technologies were employed. Originality/value – Studies in the area of e-government typically focus either on technology adoption problems or service quality problems. The role of service quality in adoption is rarely addressed. The research presented in this paper is of great value to the institutions that are involved in the development of technology-based e-government services in Oman.


2021 ◽  
Vol 21 ◽  
pp. 330-335
Author(s):  
Maciej Wadas ◽  
Jakub Smołka

This paper presents the results of performance analysis of the Tensorflow library used in machine learning and deep neural networks. The analysis focuses on comparing the parameters obtained when training the neural network model for optimization algorithms: Adam, Nadam, AdaMax, AdaDelta, AdaGrad. Special attention has been paid to the differences between the training efficiency on tasks using microprocessor and graphics card. For the study, neural network models were created in order to recognise Polish handwritten characters. The results obtained showed that the most efficient algorithm is AdaMax, while the computer component used during the research only affects the training time of the neural network model used.


Sign in / Sign up

Export Citation Format

Share Document