scholarly journals Community Detection Using Node Attributes and Structural Patterns in Online Social Networks

2017 ◽  
Vol 10 (4) ◽  
pp. 50
Author(s):  
Bikash Chandra Singh ◽  
Mohammad Muntasir Rahman ◽  
Md Sipon Miah ◽  
Mrinal Kanti Baowaly

Community detection in online social networks is a difficult but important phenomenon in term of revealing hidden relationships patterns among people so that we can understand human behaviors in term of social-economics perspectives. Community detection algorithms allow us to discover these types of patterns in online social networks. Identifying and detecting communities are not only of particular importance but also have immediate applications. For this reason, researchers have been intensively investigated to implement efficient algorithms to detect community in recent years. In this paper, we introduce set theory to address the community detection problem considering node attributes and network structural patterns. We also formulate probability theory to detect the overlapping community in online social network. Furthermore, we extend our focus on the comparative analysis on some existing community detection methods, which basically consider node attributes and edge contents for detecting community. We conduct comprehensive analysis on our framework so that we justify the performance of our proposed model. The experimental results show the effectiveness of the proposed approach.

Author(s):  
S Rao Chintalapudi ◽  
M. H. M. Krishna Prasad

Community Structure is one of the most important properties of social networks. Detecting such structures is a challenging problem in the area of social network analysis. Community is a collection of nodes with dense connections than with the rest of the network. It is similar to clustering problem in which intra cluster edge density is more than the inter cluster edge density. Community detection algorithms are of two categories, one is disjoint community detection, in which a node can be a member of only one community at most, and the other is overlapping community detection, in which a node can be a member of more than one community. This chapter reviews the state-of-the-art disjoint and overlapping community detection algorithms. Also, the measures needed to evaluate a disjoint and overlapping community detection algorithms are discussed in detail.


Author(s):  
Pooja Wadhwa ◽  
M.P.S Bhatia

Online social networks have been continuously evolving and one of their prominent features is the evolution of communities which can be characterized as a group of people who share a common relationship among themselves. Earlier studies on social network analysis focused on static network structures rather than dynamic processes, however, with the passage of time, the networks have also evolved and the researchers have started to focus on the aspect of studying dynamic behavior of networks. This paper aims to present an overview of community detection approaches graduating from static community detection methods towards the methods to identify dynamic communities in networks. The authors also present a classification of the existing dynamic community detection algorithms along the dimension of studying the evolution as either a two-step approach comprising of community detection via static methods and then applying temporal dynamics or a unified approach which comprises of dynamic detection of communities along with their evolutionary characteristics.


2017 ◽  
Vol 01 (01) ◽  
pp. 1630001 ◽  
Author(s):  
Hossein Fani ◽  
Ebrahim Bagheri

Online social networks have become a fundamental part of the global online experience. They facilitate different modes of communication and social interactions, enabling individuals to play social roles that they regularly undertake in real social settings. In spite of the heterogeneity of the users and interactions, these networks exhibit common properties. For instance, individuals tend to associate with others who share similar interests, a tendency often known as homophily, leading to the formation of communities. This entry aims to provide an overview of the definitions for an online community and review different community detection methods in social networks. Finding communities are beneficial since they provide summarization of network structure, highlighting the main properties of the network. Moreover, it has applications in sociology, biology, marketing and computer science which help scientists identify and extract actionable insight.


2020 ◽  
Vol 9 (5) ◽  
pp. 290
Author(s):  
Chuan Ai ◽  
Bin Chen ◽  
Hailiang Chen ◽  
Weihui Dai ◽  
Xiaogang Qiu

Recently, spatial interaction analysis of online social networks has become a big concern. Early studies of geographical characteristics analysis and community detection in online social networks have shown that nodes within the same community might gather together geographically. However, the method of community detection is based on the idea that there are more links within the community than that connect nodes in different communities, and there is no analysis to explain the phenomenon. The statistical models for network analysis usually investigate the characteristics of a network based on the probability theory. This paper analyzes a series of statistical models and selects the MDND model to classify links and nodes in social networks. The model can achieve the same performance as the community detection algorithm when analyzing the structure in the online social network. The construction assumption of the model explains the reasons for the geographically aggregating of nodes in the same community to a degree. The research provides new ideas and methods for nodes classification and geographic characteristics analysis of online social networks and mobile communication networks and makes up for the shortcomings of community detection methods that do not explain the principle of network generation. A natural progression of this work is to geographically analyze the characteristics of social networks and provide assistance for advertising delivery and Internet management.


Author(s):  
S Rao Chintalapudi ◽  
H. M. Krishna Prasad M

Social network analysis is one of the emerging research areas in the modern world. Social networks can be adapted to all the sectors by using graph theory concepts such as transportation networks, collaboration networks, and biological networks and so on. The most important property of social networks is community, collection of nodes with dense connections inside and sparse connections at outside. Community detection is similar to clustering analysis and has many applications in the real-time world such as recommendation systems, target marketing and so on. Community detection algorithms are broadly classified into two categories. One is disjoint community detection algorithms and the other is overlapping community detection algorithms. This chapter reviews overlapping community detection algorithms with their strengths and limitations. To evaluate these algorithms, a popular synthetic network generator, i.e., LFR benchmark generator and the new extended quality measures are discussed in detail.


2021 ◽  
Author(s):  
Xi Chen ◽  
Ralf van der Lans ◽  
Michael Trusov

This paper presents a structural discrete choice model with social influence for large-scale social networks. The model is based on an incomplete information game and permits individual-specific parameters of consumers. It is challenging to apply this type of models to real-life scenarios for two reasons: (1) The computation of the Bayesian–Nash equilibrium is highly demanding; and (2) the identification of social influence requires the use of excluded variables that are oftentimes unavailable. To address these challenges, we derive the unique equilibrium conditions of the game, which allow us to employ a stochastic Bayesian estimation procedure that is scalable to large social networks. To facilitate the identification, we utilize community-detection algorithms to divide the network into different groups that, in turn, can be used to construct excluded variables. We validate the proposed structural model with the login decisions of more than 25,000 users of an online social game. Importantly, this data set also contains promotions that were exogenously determined and targeted to only a subgroup of consumers. This information allows us to perform exogeneity tests to validate our identification strategy using community-detection algorithms. Finally, we demonstrate the managerial usefulness of the proposed methodology for improving the strategies of targeting influential consumers in large social networks. This paper was accepted by Matthew Shum, marketing.


Sign in / Sign up

Export Citation Format

Share Document