scholarly journals The Odd Power Lindley Generator of Probability Distributions: Properties, Characterizations and Regression Modeling

2019 ◽  
Vol 8 (2) ◽  
pp. 70 ◽  
Author(s):  
Mustafa C. Korkmaz ◽  
Emrah Altun ◽  
Haitham M. Yousof ◽  
G.G. Hamedani

In this study, a new flexible family of distributions is proposed with its statistical properties as well as some useful characterizations. The maximum likelihood method is used to estimate the unknown model parameters by means of two simulation studies. A new regression model is proposed based on a special member of the proposed family called, the log odd power Lindley Weibull distribution. Residual analysis is conducted to evaluate the model assumptions. Four applications to real data sets are given to demonstrate the usefulness of the proposed model.

2017 ◽  
Vol 2 (4) ◽  
pp. 68-75
Author(s):  
Zubair Ahmad ◽  
Brikhna Iqbal

In this article, a four parameter generalization of the flexible Weibull extension distribution so-called generalized flexible Weibull extension distribution is studied. The proposed model belongs to T-X family of distributions proposed by Alzaatreh et al. [5]. The suggested model is much flexible and accommodates increasing, unimodal and modified unimodal failure rates. A comprehensive expression of the numerical properties and the estimates of the model parameters are obtained using maximum likelihood method. By appropriate choice of parameter values the new model reduces to four sub models. The proposed model is illustrated by means of three real data sets.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 440 ◽  
Author(s):  
Abdulhakim A. Al-babtain ◽  
I. Elbatal ◽  
Haitham M. Yousof

In this article, we introduced a new extension of the binomial-exponential 2 distribution. We discussed some of its structural mathematical properties. A simple type Copula-based construction is also presented to construct the bivariate- and multivariate-type distributions. We estimated the model parameters via the maximum likelihood method. Finally, we illustrated the importance of the new model by the study of two real data applications to show the flexibility and potentiality of the new model in modeling skewed and symmetric data sets.


Author(s):  
Muhammad Aslam ◽  
Zawar Hussain ◽  
Zahid Asghar

In this article, we propose a new family of distributions using the T-X family named as modified generalized Marshall-Olkin family of distributions. Comprehensive mathematical and statistical properties of this family of distributions are provided. The model parameters are estimated by maximum likelihood method. The maximum likelihood estimation under Type-II censoring is also discussed. Two lifetime data sets are used to show the suitability and applicability of the new family of distributions. For comparison purposes, different goodness of fit tests are used.  


2021 ◽  
Vol 9 (4) ◽  
pp. 942-962
Author(s):  
Mohamed Abo Raya

This work introduces a new one-parameter compound G family. Relevant statistical properties are derived. The new density can be “asymmetric right skewed with one peak and a heavy tail”, “symmetric” and “left skewedwith one peak”. The new hazard function can be “upside-down”, “upside-down-constant”, “increasing”, “decreasing” and “decreasing-constant”. Many bivariate types have been also derived via different common copulas. The estimation of the model parameters is performed by maximum likelihood method. The usefulness and flexibility of the new family is illustrated by means of two real data sets.


2019 ◽  
Vol 8 (2) ◽  
pp. 146
Author(s):  
Saeed Al-mualim

A new extension of the Poisson Inverse Weibull distribution is derived and studied in details. Number of structural mathematical properties are derived. We used the well-known maximum likelihood method for estimating the model parameters. The new model is applied for modeling some real data sets to prove its importance and flexibility empirically.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Filomat ◽  
2019 ◽  
Vol 33 (12) ◽  
pp. 3855-3867 ◽  
Author(s):  
Hassan Bakouch ◽  
Christophe Chesneau ◽  
Muhammad Khan

In this paper, we introduce a new family of distributions extending the odd family of distributions. A new tuning parameter is introduced, with some connections to the well-known transmuted transformation. Some mathematical results are obtained, including moments, generating function and order statistics. Then, we study a special case dealing with the standard loglogistic distribution and the modifiedWeibull distribution. Its main features are to have densities with flexible shapes where skewness, kurtosis, heavy tails and modality can be observed, and increasing-decreasing-increasing, unimodal and bathtub shaped hazard rate functions. Estimation of the related parameters is investigated by the maximum likelihood method. We illustrate the usefulness of our extended odd family of distributions with applications to two practical data sets.


Author(s):  
Fiaz Ahmad Bhatti ◽  
G. G. Hamedani ◽  
Haitham M. Yousof ◽  
Azeem Ali ◽  
Munir Ahmad

A flexible lifetime distribution with increasing, decreasing, inverted bathtub and modified bathtub hazard rate called Modified Burr XII-Inverse Weibull (MBXII-IW) is introduced and studied. The density function of MBXII-IW is exponential, left-skewed, right-skewed and symmetrical shaped.  Descriptive measures on the basis of quantiles, moments, order statistics and reliability measures are theoretically established. The MBXII-IW distribution is characterized via different techniques. Parameters of MBXII-IW distribution are estimated using maximum likelihood method. The simulation study is performed to illustrate the performance of the maximum likelihood estimates (MLEs). The potentiality of MBXII-IW distribution is demonstrated by its application to real data sets: serum-reversal times and quarterly earnings.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 358 ◽  
Author(s):  
M. S. Eliwa ◽  
Ziyad Ali Alhussain ◽  
M. El-Morshedy

Alizadeh et al. introduced a flexible family of distributions, in the so-called Gompertz-G family. In this article, a discrete analogue of the Gompertz-G family is proposed. We also study some of its distributional properties and reliability characteristics. After introducing the general class, three special models of the new family are discussed in detail. The maximum likelihood method is used for estimating the family parameters. A simulation study is carried out to assess the performance of the family parameters. Finally, the flexibility of the new family is illustrated by means of four genuine datasets, and it is found that the proposed model provides a better fit than the competitive distributions.


Sign in / Sign up

Export Citation Format

Share Document