A Double-indexed Functional Hill Process and Applications
<div>Let $X_{1,n} \leq .... \leq X_{n,n}$ be the order statistics associated with a sample $X_{1}, ...., X_{n}$ whose pertaining distribution function (\textit{df}) is $F$. We are concerned with the functional asymptotic behaviour of the sequence of stochastic processes</div><div> </div><div>\begin{equation}<br />T_{n}(f,s)=\sum_{j=1}^{j=k}f(j)\left( \log X_{n-j+1,n}-\log<br />X_{n-j,n}\right)^{s} , \label{fme}<br />\end{equation}</div><div> </div><div>indexed by some classes $\mathcal{F}$ of functions $f:\mathbb{N}%^{\ast}\longmapsto \mathbb{R}_{+}$ and $s \in ]0,+\infty[$ and where $k=k(n)$ satisfies</div><div> </div><div>\begin{equation*}<br />1\leq k\leq n,k/n\rightarrow 0\text{ as }n\rightarrow \infty .<br />\end{equation*}</div><div> </div><div>We show that this is a stochastic process whose margins generate estimators of the extreme value index when $F$ is in the extreme domain of attraction. We focus in this paper on its finite-dimension asymptotic law and provide a class of new estimators of the extreme value index whose performances are compared to analogous ones. The results are next particularized for one explicit class $\mathcal{F}$.</div>