scholarly journals A Double-indexed Functional Hill Process and Applications

2016 ◽  
Vol 8 (4) ◽  
pp. 144
Author(s):  
Modou Ngom ◽  
Gane Samb Lo

<div>Let $X_{1,n} \leq .... \leq X_{n,n}$ be the order statistics associated with a sample $X_{1}, ...., X_{n}$ whose pertaining distribution function (\textit{df}) is $F$. We are concerned with the functional asymptotic behaviour of the sequence of stochastic processes</div><div> </div><div>\begin{equation}<br />T_{n}(f,s)=\sum_{j=1}^{j=k}f(j)\left( \log X_{n-j+1,n}-\log<br />X_{n-j,n}\right)^{s} ,  \label{fme}<br />\end{equation}</div><div> </div><div>indexed by some classes $\mathcal{F}$ of functions $f:\mathbb{N}%^{\ast}\longmapsto \mathbb{R}_{+}$ and $s \in ]0,+\infty[$ and where $k=k(n)$ satisfies</div><div> </div><div>\begin{equation*}<br />1\leq k\leq n,k/n\rightarrow 0\text{ as }n\rightarrow \infty .<br />\end{equation*}</div><div> </div><div>We show that this is a stochastic process whose margins generate estimators of the extreme value index when $F$ is in the extreme domain of attraction. We focus in this paper on its finite-dimension asymptotic law and provide a class of new estimators of the extreme value index whose performances are compared to analogous ones. The results are next particularized for one explicit class $\mathcal{F}$.</div>

1978 ◽  
Vol 15 (03) ◽  
pp. 639-644 ◽  
Author(s):  
Peter Hall

LetXn1≦Xn2≦ ··· ≦Xnndenote the order statistics from a sample ofnindependent, identically distributed random variables, and suppose that the variablesXnn, Xn,n–1, ···, when suitably normalized, have a non-trivial limiting joint distributionξ1,ξ2, ···, asn → ∞. It is well known that the limiting distribution must be one of just three types. We provide a canonical representation of the stochastic process {ξn,n≧ 1} in terms of exponential variables, and use this representation to obtain limit theorems forξnasn →∞.


Author(s):  
Alladi Ramakrishnan

Many stochastic problems arise in physics where we have to deal with a stochastic variable representing the number of particles distributed in a continuous infinity of states characterized by a parameter E, and this distribution varies with another parameter t (which may be continuous or discrete; if t represents time or thickness it is of course continuous). This variation occurs because of transitions characteristic of the stochastic process under consideration. If the E-space were discrete and the states represented by E1, E2, …, then it would be possible to define a functionrepresenting the probability that there are ν1 particles in E1, ν2 particles in E2, …, at t. The variation of π with t is governed by the transitions defined for the process; ν1, ν2, … are thus stochastic variables, and it is possible to study the moments or the distribution function of the sum of such stochastic variableswith the help of the π function which yields also the correlation between the stochastic variables νi.


2003 ◽  
Vol 35 (04) ◽  
pp. 1007-1027 ◽  
Author(s):  
J.-P. Raoult ◽  
R. Worms

Let F be a distribution function in the domain of attraction of an extreme-value distribution H γ. If F u is the distribution function of the excesses over u and G γ the distribution function of the generalized Pareto distribution, then it is well known that F u (x) converges to G γ(x/σ(u)) as u tends to the end point of F, where σ is an appropriate normalizing function. We study the rate of (uniform) convergence to 0 of F̅ u (x)-G̅γ((x+u-α(u))/σ(u)), where α and σ are two appropriate normalizing functions.


1991 ◽  
Vol 23 (03) ◽  
pp. 612-623
Author(s):  
F. Thomas Bruss ◽  
James B. Robertson

Let X 1 , X 2 , · ··, Xn be positive i.i.d. random variables with known distribution function having a finite mean. For a given s ≥0 we define Nn = N(n, s) to be the largest number k such that the sum of the smallest k Xs does not exceed s, and Mn = M(n, s) to be the largest number k such that the sum of the largest k X's does not exceed s. This paper studies the precise and asymptotic behaviour of E(Nn ), E(Mn ), Nn, Mn, and the corresponding ‘stopped' order statistics and as n →∞, both for fixed s, and where s =sn is an increasing function of n.


2004 ◽  
Vol 36 (04) ◽  
pp. 1116-1147 ◽  
Author(s):  
David Assaf ◽  
Larry Goldstein ◽  
Ester Samuel-Cahn

Let X n ,…,X 1 be independent, identically distributed (i.i.d.) random variables with distribution function F. A statistician, knowing F, observes the X values sequentially and is given two chances to choose Xs using stopping rules. The statistician's goal is to stop at a value of X as small as possible. Let equal the expectation of the smaller of the two values chosen by the statistician when proceeding optimally. We obtain the asymptotic behaviour of the sequence for a large class of Fs belonging to the domain of attraction (for the minimum) 𝒟(G α), where G α(x) = [1 - exp(-x α)]1(x ≥ 0) (with 1(·) the indicator function). The results are compared with those for the asymptotic behaviour of the classical one-choice value sequence , as well as with the ‘prophet value’ sequence


2003 ◽  
Vol 35 (4) ◽  
pp. 1007-1027 ◽  
Author(s):  
J.-P. Raoult ◽  
R. Worms

Let F be a distribution function in the domain of attraction of an extreme-value distribution Hγ. If Fu is the distribution function of the excesses over u and Gγ the distribution function of the generalized Pareto distribution, then it is well known that Fu(x) converges to Gγ(x/σ(u)) as u tends to the end point of F, where σ is an appropriate normalizing function. We study the rate of (uniform) convergence to 0 of F̅u(x)-G̅γ((x+u-α(u))/σ(u)), where α and σ are two appropriate normalizing functions.


1978 ◽  
Vol 21 (4) ◽  
pp. 447-459 ◽  
Author(s):  
D. Mejzler

Let Xl, …, Xn be independent random variables with the same distribution function (df) F(x) and let Xln≤X2n≤…≤nr be the corresponding order statistics. The (df) of Xkn will be denoted always by Fkn(x). Many authors have investigated the asymptotic behaviour of the maximal term Xnn as n → ∞. Gnedenko [3] proved the following


2004 ◽  
Vol 36 (4) ◽  
pp. 1116-1147 ◽  
Author(s):  
David Assaf ◽  
Larry Goldstein ◽  
Ester Samuel-Cahn

Let Xn,…,X1 be independent, identically distributed (i.i.d.) random variables with distribution function F. A statistician, knowing F, observes the X values sequentially and is given two chances to choose Xs using stopping rules. The statistician's goal is to stop at a value of X as small as possible. Let equal the expectation of the smaller of the two values chosen by the statistician when proceeding optimally. We obtain the asymptotic behaviour of the sequence for a large class of Fs belonging to the domain of attraction (for the minimum) 𝒟(Gα), where Gα(x) = [1 - exp(-xα)]1(x ≥ 0) (with 1(·) the indicator function). The results are compared with those for the asymptotic behaviour of the classical one-choice value sequence , as well as with the ‘prophet value’ sequence


1991 ◽  
Vol 23 (3) ◽  
pp. 612-623 ◽  
Author(s):  
F. Thomas Bruss ◽  
James B. Robertson

Let X1, X2, · ··, Xn be positive i.i.d. random variables with known distribution function having a finite mean. For a given s ≥0 we define Nn = N(n, s) to be the largest number k such that the sum of the smallest k Xs does not exceed s, and Mn = M(n, s) to be the largest number k such that the sum of the largest k X's does not exceed s. This paper studies the precise and asymptotic behaviour of E(Nn), E(Mn), Nn, Mn, and the corresponding ‘stopped' order statistics and as n →∞, both for fixed s, and where s =sn is an increasing function of n.


Sign in / Sign up

Export Citation Format

Share Document