scholarly journals Numerical Simulations of V-Shaped Plates Subjected to Blast Loadings: A Validation Study

2016 ◽  
Vol 10 (11) ◽  
pp. 203
Author(s):  
Mohd Zaid Othman ◽  
Qasim H. Shah ◽  
Muhammad Akram Muhammad Khan ◽  
Tan Kean Sheng ◽  
M. A. Yahaya ◽  
...  

A series of numerical simulations utilizing LS-DYNA was performed to determine the mid-point deformations of V-shaped plates due to blast loading. The numerical simulation results were then compared with experimental results from published literature. The V-shaped plate is made of DOMEX 700 and is used underneath an armour personal carrier vehicle as an anti-tank mine to mitigate the effects of explosion from landmines in a battlefield. The performed numerical simulations of blast loading of V-shaped plates consisted of various angles i.e. 60°, 90°, 120°, 150° and 180°; variable mass of explosives located at the central mid-point of the V-shaped vertex with various stand-off distances. It could be seen that the numerical simulations produced good agreement with the experimental results where the average difference was about 26.6%.

2009 ◽  
Vol 79-82 ◽  
pp. 1277-1280
Author(s):  
Yu Zheng ◽  
Xiao Ming Wang ◽  
Wen Bin Li ◽  
Wen Jin Yao

In order to study the effects of liner materials on the formation of Shaped Charges with Double Layer Liners (SCDLL) into tandem Explosively Formed Projectile (EFP), the formation mechanism of DLSCL was studied. Utilizing two-dimensional finite element dynamic code AUTODYN, the numerical simulations on the mechanical phenomenon of SCDLL forming into tandem EFP were carried out. X-ray pictures were obtained after Experiments on SCDLL. Comparisons between experimental results and numerical simulation results have good agreement. It can be concluded from the results that the materials properties and configurations of both liners are crucial to the formation of tandem EFP.


2020 ◽  
Vol 70 (1) ◽  
pp. 35-40
Author(s):  
Wenlong Xu ◽  
Cheng Wang ◽  
Jianming Yuan ◽  
Weiliang Goh ◽  
Bin Xu

Annular shaped charge can efficiently create large penetration diameter, which can solve the problem of small penetration diameter of a traditional shaped charge, and thus meeting the requirements of large penetration diameter in some specific situations. In this paper, the influence of five kinds shell structures, i.e. no shell, aluminum shell with thickness of 2.0 mm and steel shell with thickness of 2.0 mm, 3.0 mm and 4.0 mm, on bore-center annular shaped charges (BCASCs) formation and penetrating steel targets was investigated by numerical simulations and experiments. The numerical simulation results are in good agreement with the experimental results. The results showed that, from no shell to aluminum shell of 2.0 mm and then to steel shell of 2.0 mm, 3.0 mm and 4.0 mm for BCASCs, the diameter and radial velocity of projectile head decrease, the axial velocity of BCASC projectiles increases gradually, the penetration diameter of the targets decreases, and the penetration depth increases. The penetration diameter caused by the BCASC with no shell is the largest, being 116.0 mm (1.16D), D is the charge diameter. The penetration depth caused by the BCASC with steel shell of 4.0 mm thickness is the deepest, being 76.4 mm (0.76D).


2018 ◽  
Vol 7 (3.29) ◽  
pp. 243
Author(s):  
Sher Afghan Khan ◽  
Mir Owais Ali ◽  
Miah Mohammed Riyadh ◽  
Zahid Hossen ◽  
Nafis Mahdi Arefin

A numerical simulation was carried out to compare various turbulence models simulating axisymmetric nozzle flow past suddenly expanded ducts. The simulations were done for L/D = 10. The convergent-divergent nozzle has been modeled and simulated using the turbulence models: The Standard k-ε model, The Standard k-ω model and The SST k-ω model. Numerical simulations were done for Mach numbers 1.87, 2.2, and 2.58 and the nozzles were operated for NPRs in the range from 3 to 11. From the numerical analysis it is apparent that for a given Mach number and effect of NPR will result in maximum gain or loss of pressure. Numerical results are in good agreement with the experimental results.  


2011 ◽  
Vol 255-260 ◽  
pp. 3133-3136
Author(s):  
Quan Bin Zhao ◽  
Xin Liang Jiang

The characteristics and research situation of bond-slip performance at the inter face of concrete and other materials are introduced, and the bond-slip constitutive relation models are summarized at the same time. Through the load-slip curves obtained from the pull-out experiment of CFFP, the proposed bond-slip constitutive relation models are presenting, including the simple one. With the numerical simulation analysis of CFFP is carried out by the use of the proposed constitutive relation, while the numerical simulation results are in good agreement with the experimental results conducted before, which is feasible and can be applied to further research on CFFP.


Author(s):  
Hengyu Wang ◽  
Min Zou ◽  
Robert L. Jackson ◽  
Preston R. Larson ◽  
Matthew B. Johnson

Nanoindentation on a Ni nanodot-patterned surface (NDPS) was investigated experimentally and numerically. The Ni NDPS consists of well-ordered arrays of Ni nanodots with approximately the same size and shape. The nanoindentation experiments were performed on the Ni NDPS using diamond tips of 1 and 5 μm radii of curvature. To efficiently simulate large number of nanodots in contact, numerical simulations were carried out using formulae empirically fitted from a finite element (FE) study of a single spherical contact. The simulation results were found to be in good agreement with the experimental results.


2011 ◽  
Vol 90-93 ◽  
pp. 3180-3185
Author(s):  
Zhong Xing Luo ◽  
Kun Sheng Luo ◽  
Yue Tang Zhao ◽  
Jie Ji Huang

The keyword LOAD_BLAST in LS-DYNA has been established to simulate the response of the structure under blast loading since V960. The ConWep algorithm in it is described in this paper. As the load and impulse computed by keyword LOAD_BLAST are smaller than those they should be, the accuracy and reliability of parameters in keyword LOAD_BLAST should be verified and adjusted according to the experiment results of the blast loading on blast door. The results show that the load and impulse computed by ConWep module in LS-DYNA will be close to the experimental results when the TNT equivalent in keyword LOAD_BLAST is multiplied by a factor of 1.35.


2013 ◽  
Vol 671-674 ◽  
pp. 3204-3207
Author(s):  
Fan Yang ◽  
Li He ◽  
Xiao Liu ◽  
Bin Jia

In order to study the propagation law of shock wave and blast load distribution when an interior explosion occur in a box structure, a numerical simulation of an interior explosion within a box-shaped structure is presented in this paper using LS-DYNA. Overpressure-time history curve of the blast load at the measured points is obtained by numerical simulation, and compared with the experimental results. Numerical simulation results and experimental results are in good agreement. The results show that the blast wave reflected and superimposed many times in the box-shaped structure. When TNT is located in the center of the box-shaped structure, the center and the corner of the wall suffered the maximum overpressure.


2012 ◽  
Vol 215-216 ◽  
pp. 275-278
Author(s):  
Hong Tang ◽  
Guo Guang Chen ◽  
Hui Zhu He

Considering safety and reliability of interface between aircraft and artillery, aircraft need of increasing space of shell bands, but its range decreased by flight experimental results. It is enough to numerically simulate and calculate to aerodynamics of two projects (namely aircraft increased spacing bands vs. archetype aircraft) model in this paper. The simulation results show that big space of shell bands affect aircraft body’s coefficient of drag, and keep to flight experimental results. In keeping to big spacing bands at the same time, it is put forward optimization scheme that aircraft can reach to design range by adjusted tails shrink angle. When the tails shrink angle reached to six degrees, the big spacing bands aircraft’s coefficient of drag decreased obviously and pressure coefficient little increased to avail of improving aircraft’s range by a large of numerical simulations.


2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


Sign in / Sign up

Export Citation Format

Share Document