scholarly journals A New Scheme for Fault Detection and Classification Applied to DC Motor

2018 ◽  
Vol 19 (2) ◽  
pp. 327 ◽  
Author(s):  
Laércio I. Santos ◽  
Reinaldo M. Palhares ◽  
Marcos F. S. V. D'Angelo ◽  
João B. Mendes ◽  
Renê R. Veloso ◽  
...  

This study presents an approach for fault detection and classification in a DC drive system. The fault is detected by a classical Luenberger observer. After the fault detection, the fault classification is started. The fault classification, the main contribution of this paper, is based on a representation which combines the Subctrative Clustering algorithm with an adaptation of Particle Swarm Clustering.

2021 ◽  
Vol 21 (2) ◽  
pp. 79
Author(s):  
Supriyanto Praptodiyono ◽  
Hari Maghfiroh ◽  
Joko Slamet Saputro ◽  
Agus Ramelan

The electric motor is one of the technological developments which can support the production process. DC motor has some advantages compared to AC motor especially on the easier way to control its speed or position as well as its widely adjustable range. The main issue in the DC motor is controlling the angular speed with uncertainty and disturbance. The alternative solution of a control method with simple, easy to design, and implementable in a multi-input multi-output system is integral state feedback such as linear quadratic Gaussian (LQG). It is a combination between linear quadratic regulator and Kalman filter. One of the advantages of this method is the usage of fewer sensors compared with the original linear quadratic regulator method which uses sensors as many as the state in the system model. The design, simulation, and experimental study of the application of LQG as state feedback control in a DC-drive system have been done. Both performance and energy were analyzed and compared with conventional proportional integral derivative (PID). The gain of LQG was determined by trial whereas the PID gain is determined from MATLAB autotuning without fine-tuning. The load test and tracking test were carried out in the experiment. Both simulation and hardware tests showed the same result which LQG is superior in integral absolute error (IAE) by up to 74.37 % in loading test compared to PID. On the other side, LQG needs more energy, it consumes higher energy by 6.34 % in the load test.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3460 ◽  
Author(s):  
Shahriar Rahman Fahim ◽  
Subrata K. Sarker ◽  
S. M. Muyeen ◽  
Md. Rafiqul Islam Sheikh ◽  
Sajal K. Das

Accurate fault classification and detection for the microgrid (MG) becomes a concern among the researchers from the state-of-art of fault diagnosis as it increases the chance to increase the transient response. The MG frequently experiences a number of shunt faults during the distribution of power from the generation end to user premises, which affects the system reliability, damages the load, and increases the fault line restoration cost. Therefore, a noise-immune and precise fault diagnosis model is required to perform the fast recovery of the unhealthy phases. This paper presents a review on the MG fault diagnosis techniques with their limitations and proposes a novel discrete-wavelet transform (DWT) based probabilistic generative model to explore the precise solution for fault diagnosis of MG. The proposed model is made of multiple layers with a restricted Boltzmann machine (RBM), which enables the model to make the probability reconstruction over its inputs. The individual RBM layer is trained with an unsupervised learning approach where an artificial neural network (ANN) algorithm tunes the model for minimizing the error between the true and predicted class. The effectiveness of the proposed model is studied by varying the input signal and sampling frequencies. A level of considered noise is added with the sample data to test the robustness of the studied model. Results prove that the proposed fault detection and classification model has the ability to perform the precise diagnosis of MG faults. A comparative study among the proposed, kernel extreme learning machine (KELM), multi KELM, and support vector machine (SVM) approaches is studied to confirm the robust superior performance of the proposed model.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Maurilio Inacio ◽  
Andre Lemos ◽  
Walmir Caminhas

The emergence of complex machinery and equipment in several areas demands efficient fault diagnosis methods. Several fault diagnosis methods based on different theories and approaches have been proposed in the literature. According to the concept of intelligent maintenance, the application of intelligent systems to accomplish fault diagnosis from process historical data has been shown to be a promising approach. In problems involving complex nonstationary dynamic systems, an adaptive fault diagnosis system is required to cope with changes in the monitored process. In order to address fault diagnosis in this scenario, use of the so-called “evolving intelligent systems” is suggested. This paper proposes the application of an evolving fuzzy classifier for fault diagnosis based on a new approach that combines a recursive clustering algorithm and a drift detection method. In this approach, the clustering update depends not only on a similarity measure, but also on the monitoring changes in the input data flow. A merging cluster mechanism was incorporated into the algorithm to enable the removal of redundant clusters. Multivariate Gaussian memberships functions are employed in the fuzzy rules to avoid information loss if there is interaction between variables. The novel approach provides greater robustness to outliers and noise present in data from process sensors. The classifier is evaluated in fault diagnosis of a DC drive system. In the experiments, a DC drive system fault simulator was used to simulate normal operation and several faulty conditions. Outliers and noise were added to the simulated data to evaluate the robustness of the fault diagnosis model.


2021 ◽  
Vol 11 (5) ◽  
pp. 2166
Author(s):  
Van Bui ◽  
Tung Lam Pham ◽  
Huy Nguyen ◽  
Yeong Min Jang

In the last decade, predictive maintenance has attracted a lot of attention in industrial factories because of its wide use of the Internet of Things and artificial intelligence algorithms for data management. However, in the early phases where the abnormal and faulty machines rarely appeared in factories, there were limited sets of machine fault samples. With limited fault samples, it is difficult to perform a training process for fault classification due to the imbalance of input data. Therefore, data augmentation was required to increase the accuracy of the learning model. However, there were limited methods to generate and evaluate the data applied for data analysis. In this paper, we introduce a method of using the generative adversarial network as the fault signal augmentation method to enrich the dataset. The enhanced data set could increase the accuracy of the machine fault detection model in the training process. We also performed fault detection using a variety of preprocessing approaches and classified the models to evaluate the similarities between the generated data and authentic data. The generated fault data has high similarity with the original data and it significantly improves the accuracy of the model. The accuracy of fault machine detection reaches 99.41% with 20% original fault machine data set and 93.1% with 0% original fault machine data set (only use generate data only). Based on this, we concluded that the generated data could be used to mix with original data and improve the model performance.


Sign in / Sign up

Export Citation Format

Share Document