scholarly journals An inverse spectral problem for non-selfadjoint Sturm-Liouville operators with nonseparated boundary conditions

2012 ◽  
Vol 43 (2) ◽  
Author(s):  
Vjacheslav Yurko
2012 ◽  
Vol 43 (2) ◽  
pp. 289-299 ◽  
Author(s):  
Vjacheslav Yurko

Non-selfadjoint Sturm-Liouville operators on a finite interval with nonseparated boundary conditions are studied. We establish properties of the spectral characteristics and investigate an inverse problem of recovering the operators from their spectral data. For this inverse problem we prove a uniqueness theorem and provide a procedure for constructing the solution.


2021 ◽  
Vol 51 ◽  
pp. 18-30
Author(s):  
Milenko Pikula ◽  
Dragana Nedić ◽  
Ismet Kalco ◽  
Ljiljanka Kvesić

This paper is dedicated to solving of the direct and inverse spectral problem for Sturm Liouville type of operator with constant delay from 𝜋/2 to 𝜋, non-zero initial function and Robin’s boundary conditions. It has been proved that two series of eigenvalues unambiguously define the following parameters: delay, coefficients of delay within boundary conditions, the potential on the segment from the point of delay to the right-hand side of the distance and the product of the starting function and potential from the left end of the distance to the delay point.


2019 ◽  
Vol 50 (3) ◽  
pp. 293-305
Author(s):  
S. V. Vasiliev

Sturm-Liouville differential operators with singular potentials on arbitrary com- pact graphs are studied. The uniqueness of recovering operators from Weyl functions is proved and a constructive procedure for the solution of this class of inverse problems is provided.


Author(s):  
Н.Ф. Валеев ◽  
Ю.В. Мартынова ◽  
Я.Т. Султанаев

Исследуется модельная обратная спектральная задача для оператора Штурма-Лиувилля на геометрическом графе. Суть данной задачи состоит в восстановлении $N$ параметров граничных условий по $N$ собственным значениям. Установлено, что эта задача обладает свойством монотонной зависимости собственных значений от параметров граничных условий. Поставленная задача сведена к многопараметрической обратной спектральной задаче для оператора в конечномерном пространстве. Предложен новый алгоритм численного решения рассматриваемой задачи. A model inverse spectral problem for the Sturm-Liouville operator on a geometric graph is studied. This problem consists in finding $N$ parameters of the boundary conditions using its $N$ known eigenvalues. It is shown that the problem under consideration possess the property of a monotonic dependence of its eigenvalues on the parameters of the boundary conditions. This problem is reduced to a multiparameter inverse spectral problem for the operator in a finite-dimensional space. A new algorithm for the numerical solution of this problem is proposed.


Sign in / Sign up

Export Citation Format

Share Document