scholarly journals Synthesis of cuprous oxide nanocubes combined with chitosan nanoparticles and its application to p-nitrophenol degradation

2021 ◽  
Vol 22 (48) ◽  
Author(s):  
Tran Thi Bich Quyen ◽  
Ngo Nguyen Tra My ◽  
Do Thi Thuy Ngan ◽  
Duy Toan Pham ◽  
Doan Van Hong Thien

For the first time, cuprous oxide nanocubes (Cu2O NCBs) were successfully combined with chitosan nanoparticles (CS NPs) to generate Cu2O NCBs/CS NPs composites material with highly optical property and photocatalytic activity using a simple and eco-friendly synthetic approach at room temperature for 30 min. The synthesized Cu2O NCBs NPs/CS NPs were determined characterizations by Ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared spectroscopy (FTIR), X – ray Diffraction (XRD),  Transmission Electron Microscope (TEM) and Energy-dispersive X-ray spectroscopy (EDX). Results show that the Cu2O NCBs/CS NPs composites have an average particle size of ~3-5 nm; in which, Cu2O has the form of nanocubes (Cu2O NCBs) with size ~3-4 nm and chitosan nanoparticles with spherical shape (CS NPs) with size ~4-5 nm. In addition, the percent (%) composition of elements present in Cu2O NCBs/CS NPs composites material have been obtained respective: Cu (23.99%), O (38.18%), and C (33.61%). Moreover, Cu2O NCBs/CS NPs composites material was also investigated for photocatalytic activity applied in p-nitrophenol degradation. The obtained results showed that the catalytic capability of Cu2O NCBs/CS NPs for p-nitrophenol reduction reached the highest efficiency >55% in the treatment time of 25 min, and this efficiency was higher than that result of using ZnO@chitosan nanoparticles (ZnO@CS NPs) catalyst under the same conditions for comparison.

2021 ◽  
Author(s):  
Mahesh Gaidhane ◽  
Deepak Taikar ◽  
Pravin Gaidhane ◽  
Kalpana Nagde

Abstract Nanocrystalline α-Fe2O3 is synthesized by sol-gel technique. The prepared nanomaterial was characterized by X-ray diffraction (XRD), SEM, TEM, Fourier Transform Infrared (FTIR) spectroscopy, Vibrating Sample Magnetometry (VSM) and photoluminescence (PL) techniques. X-ray powder diffraction analysis confirmed the formation of α-Fe2O3. Electron microscopy showed spherical morphologies with an average particle size of 30-40 nm. The magnetic property of the prepared material was studied by VSM at room temperature. VSM study shows superparamagnetic nature of the synthesized nanoparticles. Photoluminescence (PL) emission spectra show intense broad emission band centered at 570 nm with 393 nm excitation indicating its usefulness for w-LED application. The CIE-chromaticity color coordinates of prepared material were calculated. The photocatalytic activity of the α-Fe2O3 nanoparticles was analyzed and the nanopowder exhibited good photocatalytic activity for the removal AO7 from its aqueous solution.


2020 ◽  
Vol 12 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Xiangrong Ma ◽  
Rui Dang ◽  
Jieying Liu ◽  
Fang Yang ◽  
Huigui Li ◽  
...  

In this paper, we report a novel and facile approach for the synthesis of spinel NiFe2O4 nanoparticles and studies of its photocatalytic activity for oxidation of alcohols. The as-synthesized catalyst was thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental mapping, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and N2 adsorption–desorption isotherm (BET) analysis. The TEM image reveals cubic shapes with an average particle size of 10–20 nm. The as-synthesized spinel NiFe2O4 has proved to be an excellent photocatalyst for oxidation of alcohol to the aldehyde with a conversion of 80% and selectivity of 99%. The catalyst has also proved to be noteworthy as it does not loss its catalytic activity even after five cycles of reuse.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. A. Athmaselvi ◽  
C. Kumar ◽  
M. Balasubramanian ◽  
Ishita Roy

This study evaluates the physical properties of freeze dried tropical (guava, sapota, and papaya) fruit powders. Thermal stability and weight loss were evaluated using TGA-DSC and IR, which showed pectin as the main solid constituent. LCR meter measured electrical conductivity, dielectric constant, and dielectric loss factor. Functional groups assessed by FTIR showed presence of chlorides, and O–H and N–H bonds in guava, chloride and C–H bond in papaya, and chlorides, and C=O and C–H bonds in sapota. Particle size and type of starch were evaluated by X-ray diffraction and microstructure through scanning electronic microscopy. A semicrystalline profile and average particle size of the fruit powders were evidenced by X-ray diffraction and lamellar/spherical morphologies by SEM. Presence of A-type starch was observed in all three fruits. Dependence of electric and dielectric properties on frequency and temperature was observed.


Author(s):  
Saranyoo Chaiwichian ◽  
Buagun Samran

Abstract Monoclinic BiVO4 photocatalyst films decorated on glass substrates were successfully fabricated via a dip-coating technique with different annealing temperatures of 400 °C, 450 °C, 500°C, and 550 °C. All of the physical and chemical properties of as-prepared BiVO4 photocatalyst film samples were investigated using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–vis diffuse reflectance spectra techniques. The results revealed that the as-prepared BiVO4 photocatalyst film samples retained a monoclinic phase with an average particle size of about 50 – 100 nm. Moreover, the BiVO4 photocatalyst film samples showed a strong photoabsorption edge in the range of visible light with the band gap energy of 2.46 eV. The photocatalytic activities of all the film samples were tested by the degradation of model acid orange 7 under visible light irradiation. The BiVO4 photocatalyst film sample annealed at a temperature of 500 °C showed the highest photoactivity efficiency compared with other film samples, reaching up to 51%within 180 min. In addition, the stability and reusability of BiVO4 photocatalyst film sample made with an annealing temperature of 500 °C did not show loss of photodegradation efficiency of acid orange 7 after ten recycles. A likely mechanism of the photocatalytic process was established by trapping experiments, indicating that the hydroxyl radical scavenger species can be considered to play a key role for acid orange 7 degradation under visible light irradiation.


2018 ◽  
Vol 8 (5) ◽  
pp. 178-183
Author(s):  
Manish Kumar ◽  
Hemant K. Sharma

The objective of this study is to prepare nanogels were prepared via charged gellan gum. It was prepared by in situ cross linking reaction between two oppositely charged materials by green method without use of chemical cross linking agents. The prepared nanogels were characterized by Dynamic light scattering, scanning electron microscopy, differential scanning calorimetry and X- Ray diffractometry. The prepared formulation had average particle size of 226 nm with polydispersity index of 0.3. The doxorubicin loaded nanogel demonstrated sustained release for 20 h. The prepared nanogels were hemocompatible and cyctocompatible as revealed by hemocompatibility and MTT assay respectively. All results confirmed that these nanogels can be used for cancer treatment. Keywords: Nanogel, Chitosan, Gellan gum, Doxorubicin, Cancer.


2018 ◽  
Vol 15 (1) ◽  
pp. 6122-6129 ◽  
Author(s):  
Meram S. Abdelrahman ◽  
Sahar Nassar ◽  
Hamada Mashaly ◽  
Safia Mahmoud ◽  
Dalia Maamoun

Micro-encapsulated pigments were formulated into biodegradable printing pastes and their properties were analyzed. The pigment was used as the core material and polylactic-based biodegradable thickener was used as the wall-former. Cotton/polyester blend fabric was printed with micro-encapsulated pigment using screen-printing technique without dispersing agents, penetrating agents, leveling agents or other auxiliaries. Micro-encapsulated pigment has been characterized in terms of average particle size and size distribution, morphological structure and elemental composition using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The variations in viscosity and paste stability were observed upon storing over 7 days at ambient temperature. For permanence, the micro-encapsulation process afforded better colorfastness properties against light, washing, rubbing, and perspiration.


2018 ◽  
Vol 4 (4) ◽  
pp. 135-141 ◽  
Author(s):  
V. Porkalai ◽  
B. Sathya ◽  
D. Benny Anburaj ◽  
G Nedunchezhian ◽  
S. Joshua Gnanamuthu ◽  
...  

Recently, transition metal (TM) and rare earth ion doped II–VI semiconductor nanoparticles have received much attention because such doping can modify and improve optical properties of II–VI semiconductor nanoparticles by large amount. In this study, undoped, La doped and La+Ag co-doped ZnO nano particles have been successfully synthesized by sol-gel method using the mixture of Zinc acetate dihydrate and ethanol solution. The powders were calcinated at 600 °C for 2 h. The effect of lanthanum and lanthanum-silver incorporation on the structure, morphology, optical and electrical conductivity were examined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Absorption (EDAX), Fourier transform infrared spectroscopy (FTIR), UV and Photo Luminescence (PL) Characterization. The average particle size of the synthesized ZnO nanoparticles is calculated using the Scherrer formula and is found to be of less than 20 nm. Luminescences properties were found to be enhanced for the La and La+Ag co-doped ZnO nanoparticles.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6085
Author(s):  
Fazal Ur Rehman ◽  
Rashid Mahmood ◽  
Manel Ben Ali ◽  
Amor Hedfi ◽  
Mohammed Almalki ◽  
...  

Bergenia ciliate (B. ciliate) leaf extract was used as a reducing and stabilizing agent for the synthesis of silver-copper oxide nanocomposite (Ag-CuO NC). Scanning and transmission electron microscopies (SEM and TEM) were used to examine the structural morphology, and the average particle size was determined to be 47.65 nm. The phase confirmation and crystalline structure were examined through the X-ray diffraction (XRD) technique, where cubic and monoclinic geometries were assigned to Ag and CuO. The energy dispersive X-ray (EDX), Fourier transform infrared (FTIR) and ultra-violet and visible (UV-Visible) spectroscopies were operated to analyse the elemental composition, functional groups and light absorption phenomena of the Ag-CuO NC. Under the full light spectrum, the photodegradation of Rhodamine 6G was recorded, and 99.42 percent of the dye degraded in 80 min. The Agar well diffusion method was followed to perform antibacterial activity against selected pathogens, and the activity was found to increase with increasing concentration of Ag-CuO NC. The ABTS free radical scavenging activity suggests that the activity of Ag-CuO NC is higher than ascorbic acid.


2010 ◽  
Vol 177 ◽  
pp. 673-676 ◽  
Author(s):  
Jun Xue ◽  
Hou Kui Xiang ◽  
Hong Qiao Ding ◽  
Shu Li Pang ◽  
Xue Hua Wang ◽  
...  

Carbon encapsulated Fe-Cu alloys nanoparticles were synthesized by using ferric nitrate, copper nitrate as metal sources and using sucrose as carbon source. The synthesis process involved a step of hydrazine hydrate reduction in alcohol solution and a step of annealing carbonization. The as-prepared samples were characterized by X-ray diffraction technique, X-ray energy dispersion spectrograph, trans- mission electron microscopy and Raman spectroscopy. The results showed the sample was core / shell structure, the metalic core was crystalline FeCu4 alloy, the shell was amorphous carbon, and the average particle size was about 51nm. The magnetic measurement by using a vibrating sample magnetometer revealed that the sample has ultra-soft magnetic property with the saturation magnetization Ms of 13.01 emu/g, residual magnetization Mr of 0.37 emu/g and coercive forces Hc of 54.43 Oe at room temperature.


2013 ◽  
Vol 66 (5) ◽  
pp. 564 ◽  
Author(s):  
Mingmei Zhang ◽  
Qian Sun ◽  
Zaoxue Yan ◽  
Junjie Jing ◽  
Wei Wei ◽  
...  

Well dispersed Pd@Ni bimetallic nanoparticles on multi-walled carbon nanotubes (Pd@Ni/MWCNT) are prepared and used as catalysts for the oxidation of benzyl alcohol. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy analysis, and X-ray diffraction were performed to characterise the synthesised catalyst. The results show a uniform dispersion of Pd@Ni nanoparticles on MWCNT with an average particle size of 4.0 nm. The as synthesised catalyst was applied to the oxidation of benzyl alcohol. A 99 % conversion of benzyl alcohol and a 98 % selectivity of benzaldehyde were achieved by using the Pd@Ni/MWCNT (Pd: 0.2 mmol) catalyst with water as a solvent and H2O2 as oxidant at 80°C. The catalytic activity of Pd@Ni/MWCNT towards benzyl alcohol is higher than that of a Pd/MWCNT catalyst at the same Pd loadings. The catalyst can be easily separated due to its magnetic properties.


Sign in / Sign up

Export Citation Format

Share Document