A Continuous Conduction mode/Critical Conduction Mode Active Power Factor Correction Circuit with Input Voltage Sensor-less Control

Author(s):  
Yong-Seong Roh ◽  
Changsik Yoo
Author(s):  
MOH. ZAENAL EFENDI ◽  
DEWI KUSUMA WATI ◽  
LUCKY PRADIGTA SETIYA RAHARJA

ABSTRAKPeralatan elektronika umumnya memerlukan catu daya berupa sumber tegangan DC yang berasal dari sumber tegangan AC 220 V yang disearahkan menggunakan penyearah gelombang penuh. Pemasangan filter kapasitor pada sisi output penyearah menyebabkan bentuk gelombang arus masukan terdistorsi sehingga menimbulkan arus harmonisa yang mengakibatkan nilai faktor daya menjadi rendah. Artikel ini membahas mengenai paralel flyback konverter sebagai PFC (Power Factor Correction) pada lampu LED 36 V/60 W menggunakan algoritma fuzzy type-2. Flyback konverter pertama sebagai regulator tegangan DC bekerja dalam kondisi CCM (Continuous Conduction Mode). Flyback konverter kedua sebagai PFC bekerja dalam kondisi DCM (Discontinuous Conduction Mode) sehingga konverter bersifat resistif. Hasil simulasi menunjukkan bahwa paralel flyback konverter dapat memperbaiki faktor daya dari 0.597 menjadi 0.903 dan dapat menjaga tegangan keluaran konstan sebesar 36 V menggunakan algoritma fuzzy type-2 serta arus input yang dihasilkan memenuhi standar internasional hamonisa IEC61000-3-2 kelas C.Kata kunci: PFC, flyback konverter, IEC61000-3-2, lampu LED, fuzzy type-2 ABSTRACTElectronic equipment generally requires a DC voltage source that comes from a rectified 220 AC voltage source using full-wave rectifier. Installing capacitor filter on the output of rectifier makes the input current waveform becoming distorted that cause harmonic current which results in low power factor value. This article discusses parallel flyback converter as PFC (Power Factor Correction) on 36 V/60 W LED lamp using fuzzy type-2 algorithm. The first flyback converter as voltage dc regulator works in CCM (Continuous Conduction Mode). The second flyback converter as PFC works in DCM (Discontinuous Conduction Mode) to make the resistive converter. The simulation results shows the parallel flyback converter can improve the power factor from 0.597 to become 0.903 and can maintain a constant output voltage of 36 V using fuzzy type-2 algorithm and the input current meets the international harmonics standard of IEC61000-3-2 class C.Keywords: PFC, flyback converter, IEC61000-3-2, LED lamp, fuzzy type-2


2004 ◽  
Vol 13 (03) ◽  
pp. 599-612
Author(s):  
ILYA ZELTSER ◽  
SAM BEN-YAAKOV

The feasibility of producing a modular Active Power Factor Correction (APFC) system was studied analytically and experimentally. It is shown that the novel control scheme that does not need the sensing of the input voltage is highly compatible with the modular, plug-and-play concept. Modularity is achieved by aggregating practically all the electronics in an IC or hybrid unit that may also include the power switch. This unit plus a line rectifier, inductor and bus capacitor are all that it takes to form an APFC system. It is demonstrated that dynamic stability is assured by the proposed inherent robust control method. This plug-and-play solution will greatly simplify and reduce the cost of the design and manufacturing of APFC front ends.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850127 ◽  
Author(s):  
Vinaya Sagar Kommukuri ◽  
Kanungo Barada Mohanty ◽  
Aditi Chatterjee ◽  
Kishor Thakre

In this paper, a high performance single-phase modified bridgeless AC–DC converter with reduced switch voltage stress for power factor correction (PFC) is introduced. The proposed converter is based on a single-ended primary-inductance converter (SEPIC) to meet the demands of PFC to unity and output voltage regulation. To reduce the number of components, the input bridge is combined with the SEPIC converter since the conventional SEPIC PFC is suffering with high conduction losses. It offers many advantages, such as fewer semiconductor devices in current flowing path which lead to improve the thermal management, low stress on each component, improved efficiency, high power factor compared to classical converter. Detailed analysis and design equations of the converter are presented. Simulation and experimental results are discussed for a 300[Formula: see text]W prototypeunder the universal input voltage (85–235[Formula: see text]V) to validate the performance of the converter.


Sign in / Sign up

Export Citation Format

Share Document