scholarly journals Stem base rot of winter wheat by Fusarium spp. - causes and effects

2012 ◽  
Vol 58 (2) ◽  
pp. 319-328 ◽  
Author(s):  
Małgorzata Narkiewicz-Jodko ◽  
Zygmunt Gil ◽  
Marek Urban

The aim of the work was to determine the influence of weather conditions and a degree of weed infestation on the incidence of stem bases rot (<i>Fusarium</i> spp.) of winter wheat cultivars as well as their yield. The winter wheat cultivars (Kobra, Korweta, Mikon, Zyta) were investigated (2000-2002) in the field where the following herbicides: Apyros 75 WG + Atpolan, Affinity 50,75 WG, Attribut 70 WG were applied. It has been shown the occurrence of stem base rot (<i>Fusarium</i> spp.) depended mainly on weather conditions. The application of the herbicides improved the plant health. The stem base rot on winter wheat was caused by <i>Fusarium</i> spp., specially <i>F. culmorum</i>. The decrease in winter wheat yield depended on weather conditions, weed infestation and the occurrence of stem base rot (<i>Fusarium</i> spp.).

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 632
Author(s):  
Marzena Iwańska ◽  
Jakub Paderewski ◽  
Michał Stępień ◽  
Paulo Rodrigues

A proper understanding of cultivar adaptation to different environments is of great relevance in agronomy and plant breeding. As wheat is the most important crop in Poland, with a total of about 22% of the total sown area, the study of its performance in environments with different productivity levels for consequent cultivar recommendation is of major importance. In this paper, we assess the relative performance of winter wheat cultivars in environments with different productivity and propose a method for cultivar recommendation, by considering the information of environmental conditions and drought stress. This is performed in the following steps: (1) calculation of expected wheat productivity, depending on environmental factors, (2) calculation of relative productivity of cultivars in the environments, and (3) recommendation of cultivars of a specific type and range of adaptation. Soil and weather conditions were confirmed as the most important factors affecting winter wheat yield. The weather factors should be considered rather in shorter (e.g., 10 day) than longer (e.g., 60 day) time periods and in relation to growth stages. The ANCOVA model with genotype and management intensity as fixed factors, and soil and weather parameters as covariates was proposed to assess the expected wheat productivity in particular environments and the expected performance of each genotype (cultivar). The recommendation of cultivars for locations of specified productivity was proposed based on the difference between the expected cultivar yield and the mean wheat productivity, and compared with the Polish official cultivar recommendation list.


2009 ◽  
Vol 54 (3) ◽  
pp. 189-196
Author(s):  
Bojan Stipesevic ◽  
Miro Stosic ◽  
Bojana Teodorovic ◽  
Irena Jug ◽  
Danijel Jug ◽  
...  

The trial with different side-dressing fertilizations for winter wheat has been conducted at Vetovo site, Croatia, in vegetation seasons 2007/08 and 2008/09. The five side-dressing fertilizations has been tested (Control - no sidedressing, KAN - 100 kg KAN ha-1 in tillering and jointing stages; M1 - 8 l of foliar NPK fertilizer 'Profert Mara' ha-1; M2 - 16 l ha-1 of foliar fertilizer, and; M3 - 24 ha-1 of foliar fertilizer) at four winter wheat cultivars (Anika, Fiesta, Gabi and Rapsodija), with previously applied 400 kg NPK 7:20:30 ha-1 for all treatments. Results showed that all foliar side-dressing treatments gave winter wheat grain yield higher than the control, and that M1 treatment showed equal in comparison with KAN side-dressing. Treatments M2 and M3 had, in comparison with the control, KAN and M1 treatments, higher yields which leads toward conclusion that foliar treatments can be recommended for side-dressing for given agroecological conditions.


2013 ◽  
Vol 59 (No. 3) ◽  
pp. 101-107 ◽  
Author(s):  
P. Hamouz ◽  
K. Hamouzová ◽  
J. Holec ◽  
L. Tyšer

An aggregated distribution pattern of weed populations provides opportunity to reduce the herbicide application if site-specific weed management is adopted. This work is focused on the practical testing of site-specific weed management in a winter wheat and the optimisation of the control thresholds. Patch spraying was applied to an experimental field in Central Bohemia. Total numbers of 512 application cells were arranged into 16 blocks, which allowed the randomisation of four treatments in four replications. Treatment 1 represented blanket spraying and the other treatments differed by the herbicide application thresholds. The weed infestation was estimated immediately before the post-emergence herbicide application. Treatment maps for every weed group were created based on the weed abundance data and relevant treatment thresholds. The herbicides were applied using a sprayer equipped with boom section control. The herbicide savings were calculated for every treatment and the differences in the grain yield between the treatments were tested using the analysis of variance. The site-specific applications provided herbicide savings ranging from 15.6% to 100% according to the herbicide and application threshold used. The differences in yield between the treatments were not statistically significant (P = 0.81). Thus, the yield was not lowered by site-specific weed management.


2002 ◽  
Vol 139 (4) ◽  
pp. 385-395 ◽  
Author(s):  
A. M. BLAIR ◽  
P. A. JONES ◽  
R. H. INGLE ◽  
N. D. TILLETT ◽  
T. HAGUE

Two systems for integrated weed control in winter wheat based around the combination of herbicides with cultural control have been investigated and compared with conventional practice in experiments between 1993 and 2001. These systems were (a) an overall spray of a reduced herbicide dose followed by spring tine harrow weeding and (b) the combination of herbicide applied over the crop row with a novel vision guided inter-row hoe. The latter required wheat to be established with a wider (22 cm) inter-row spacing than standard (12·5 cm). Experiments over 10 sites/seasons indicated that this increased spacing could be achieved without yield loss. Trials to measure the accuracy of hoe blade lateral positioning using the vision guidance system indicated that error was normally distributed with standard deviation of 12 mm and a bias that could be set to within 1 cm. This performance could be maintained through the normal hoeing period and the crop row location and tracking techniques were robust to moderate weed infestation. In the absence of weeds neither overall harrowing nor inter-row hoeing affected winter wheat yield, 1000-seed weight or specific weight in 12·5 or 22 cm rows. When combined with inter-row hoeing, manually targeted banded applications of fluazolate, pendimethalin or isoproturon reduced grass weed levels and increased yields over untreated controls, though better results were obtained using overall herbicides. However, improvements would be possible with more accurately targeted herbicide applications and more effective inter-row grass weed control. The implications and costs of using such an integrated system are discussed and requirements for future developments identified.


Author(s):  
С. М. Шакалій

Наведено дані досліджень впливу різних норм мінера-льних добрив на урожайність і вміст білка в зерні пше-ниці м'якої озимої. Встановлено, що внесення добрив має вплив на збільшення врожайності зерна та сприяє збіль-шенню вмісту білка в зерні. За допомогою кореляційного аналізу встановлено тісний зв'язок між урожайністю та вмістом білка в зерні пшениці озимої r=0,80). Уро-жайність пшениці озимої істотно змінюється від по-годних умов веґетаційного періоду й норм мінерального живлення. Найкращі результати спостерігаються за повного захисту рослин + «Басфоліар 36 Екстра». The investigation data of influence of different norms of mineral fertilizers on productivity and protein content in wheat grain mild winter are presented. It is established that the application of fertilizers has an impact on the increase of productivity of grain and contributes to an increase in protein content in grain. Using correlation analysis a close relationship between yield and protein content of winter wheat (r=0,80) is established. Winter wheat yield considerably changes from weather conditions during vegetation period and norms of mineral nutrition. The best results are for the full protection of plants + Basfoliar 36 Extra.


2012 ◽  
Vol 58 (1) ◽  
pp. 29-36
Author(s):  
Cecylia Jańczak ◽  
Grażyna Filoda ◽  
Robert Matysiak

In Poland winter wheat is grown on the area of 1.600.000 ha. Most of the plant protection treatments are being done without thorough analysis of real threats from pests and diseases. The aim of the research is to develop the optimal program of wheat protection against pests and diseases based on integration of various methods of plant protection. Two programs: conventional and integrated were compared. In integrated program the eventual needs and terms of treatments were estimated on the basis of detailed observations of plant infection, pest appearance, their natural enemies and thorough analysis of weather conditions and forecasts. The role of disease resistant wheat varietes and nitrogen fertilizers was also analysed. The research took into account beneficial entomofauna and its influence on pest numbers as well as influence of chemicals used in agriculture on their species. As the result the selective pesticides, safe to beneficial organisms, were selected. The quantity and quality of winter wheat yield was analysed, including protein and gluten contents. The economic effectiveness of various programs of wheat protection against pests and diseases was assessed. The results of research are important both in practical and scientific sense.


2017 ◽  
Vol 68 (6) ◽  
pp. 501 ◽  
Author(s):  
James R. Hunt

Winter wheat cultivars are defined as those that have an obligate vernalisation requirement that must be met before they will progress from the vegetative to reproductive phase of development i.e. they must experience a true winter before they will flower. Historically, very little breeding effort has been applied to the selection of winter cultivars suited to southern Australia, with the notable exception of the New South Wales Agriculture breeding program based in Wagga and Temora that ran from the 1960s until 2002. A shift by growers to earlier sowing, increased usage of dual-purpose cereals, and research highlighting the whole-farm benefits of winter cultivars to average farm wheat yield has increased grower interest and demand for winter cultivars. Three major wheat breeding companies operating in southern Australia have responded by commencing selection for milling quality winter cultivars, the first of which was released in 2017. Existing research relating to winter wheats in southern Australian farming systems is reviewed here, including interactions with agronomic management, environment and weeds and disease. It is concluded that winter wheats can offer significant production and farming system benefits to growers by allowing earlier establishment, which increases water-limited potential yield (PYw) by ~15% relative to later sown spring wheats, and makes forage available for dual-purpose grazing during vegetative development. Winter wheats sown early require agronomic management different to that of later sown spring wheats, including greater attention to control of grass weeds and certain diseases. There are significant research gaps that will prevent growers from maximising the opportunities from new winter cultivars once they are released. The first of these is a well-defined establishment window for winter cultivars, particularly in medium-low rainfall environments of South Australia, Victoria and Western Australia that have not historically grown them. There is circumstantial evidence that the yield advantage of early established winter wheats over later sown spring wheats is greatest when stored soil water is present at establishment, or the soil profile fills during the growing season. Explicit confirmation of this would allow growers to identify situations where the yield advantage of winter wheats will be maximised. Given the imminent release of several new winter wheat cultivars and the increases in PYw that they embody, it is critical to experimentally define the management and environmental conditions under which performance of these new genotypes are optimised, before their release and availability to growers. Optimising the genotype × environmental × management interactions possible with these cultivars will empower growers to make the best use of the technology and better realise the gains in water limited potential yield possible with these genotypes.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 946
Author(s):  
Astrid Vannoppen ◽  
Anne Gobin

Information on crop yield at scales ranging from the field to the global level is imperative for farmers and decision makers. The current data sources to monitor crop yield, such as regional agriculture statistics, are often lacking in spatial and temporal resolution. Remotely sensed vegetation indices (VIs) such as NDVI are able to assess crop yield using empirical modelling strategies. Empirical NDVI-based crop yield models were evaluated by comparing the model performance with similar models used in different regions. The integral NDVI and the peak NDVI were weak predictors of winter wheat yield in northern Belgium. Winter wheat (Triticum aestivum) yield variability was better predicted by monthly precipitation during tillering and anthesis than by NDVI-derived yield proxies in the period from 2016 to 2018 (R2 = 0.66). The NDVI series were not sensitive enough to yield affecting weather conditions during important phenological stages such as tillering and anthesis and were weak predictors in empirical crop yield models. In conclusion, winter wheat yield modelling using NDVI-derived yield proxies as predictor variables is dependent on the environment.


2021 ◽  
Vol 25 (6) ◽  
pp. 638-646
Author(s):  
E. I. Gultyaeva ◽  
L. A. Bespalova ◽  
I. B. Ablova ◽  
E. L. Shaydayuk ◽  
Zh. N. Khudokormova ◽  
...  

Common winter wheat is the main grain crop cultivated in the North Caucasus. Rust disease damage is one of the factors limiting wheat productivity. There are three species of rust in the region: leaf (Puccinia triticina), stem (P. graminis) and stripe rust (P. striiformis), and their significance varies from year to year. The most common is leaf rust, but in the last decade the frequency of its epiphytotic development has significantly decreased. At the same time, an increase in the harmfulness of stripe rust (P. striiformis) is noted. Stem rust in the region is mainly absent or observed at the end of the wheat growing season to a weak degree. Only in some years with favorable weather conditions its mass development is noted on susceptible cultivars. It is believed that the sources of infection with rust species in the North Caucasus are infested soft wheat crops, wild-growing cereals and exodemic infection carried by air currents from adjacent territories. In the North Caucasus, forage and wild grasses are affected by Puccinia species almost every year. Depending on weather conditions, the symptom expression is noted from late September to December and then from late February to May–June. Potentially, an autumn infection on grasses can serve as a source for infection of winter soft wheat cultivars sown in October. The purpose of these studies is to characterize the virulence of P. triticina, P. graminis, P. striiformis on wild cereals and to assess the specialization of causative agents to winter wheat in the North Caucasus. Infectious material represented by leaves with urediniopustules of leaf, stem and stripe rusts was collected from wild cereals (Poa spp., Bromus spp.) in the Krasnodar Territory in October–November 2019. Uredinium material from P. triticina, P. striiformis, and P. graminis was propagated and cloned. Monopustular Puccinia spp. isolates were used for virulence genetics analysis. In experiments to study the specialization of rust species from wild-growing cereals on common wheat, 12 winter cultivars were used (Grom, Tanya, Yuka, Tabor, Bezostaya 100, Yubileynaya 100, Vekha, Vassa, Alekseich, Stan, Gurt, Bagrat). These cultivars are widely cultivated in the North Caucasus region and are characterized by varying degrees of resistance to rust. Additionally, wheat material was inoculated with Krasnodar populations of P. triticina, P. striiformis, P. graminis from common wheat. In the virulence analysis of P. triticina on cereal grasses, four phenotypes (races) were identified: MCTKH (30 %), TCTTR (30 %), TNTTR (25 %), MHTKH (15 %), and five were identified in P. graminis (RKMTF (60 %), TKTTF, RKLTF, QKLTF, LHLPF (10 % each). Among P. striiformis isolates, three phenotypes were identified using the International and European sets of differentiating cultivars – 111E231 (88 %), 111E247 (6 %) and 78E199 (6 %). Using isogenic Avocet lines, 3 races were also identified, which differed among themselves in virulence to the Yr1, Yr11, Yr18 genes (with the prevalence of virulent ones (94 %)). Composite urediniums’ samples (a mixture of all identified races) of grass rust of each species were used to inoculate winter wheat cultivars. The most common winter wheat cultivars (75 %) were characterized by a resistant response when infected with P. graminis populations from common wheat and cereal grasses. All these cultivars were developed using donors of the rye translocation 1BL.1RS, in which the Lr26, Sr31, and Yr9 genes are localized. The number of winter wheat cultivars resistant to leaf rust in the seedling phase was lower (58 %). At the same time, all the studied cultivars in the seedling phase were susceptible to P. striiformis to varying degrees. The virulence analysis of the leaf, stem and stripe rust populations did not reveal significant differences in the virulence of the pathogens between wild-growing cereals and soft wheat. Urediniomaterial of all studied rust species successfully infested soft wheat cultivars. The results obtained indicate that grasses are rust infection reservoirs for common wheat crops in the North Caucasus.


Sign in / Sign up

Export Citation Format

Share Document