Bone Biology

Author(s):  
Elizabeth Weiss

This chapter introduces readers to the basics of understanding bone’s functions, which include calcium homeostasis and enabling movement, bone’s components, such as the collagen, and bone’s organization, such as the Haversian system found in cortical bone. The focus of this chapter is on explaining concepts of bone remodeling, which is thought to prevent fractures and other bone damage, and repair, which can take place at macro-levels and micro-levels. Wolff’s Law of bone remodeling, which was initially focused on trabecular bone changes, is discussed in terms of bone’s response to forces that result in strains and stresses. Finally, diarthrodial joint remodeling and repair are discussed; cartilage cells were once thought to be static, yet now they are known to also respond to stresses.

2014 ◽  
Author(s):  
Nicolas Bonnet ◽  
Maude Gerbaix ◽  
Paul Kostenuik ◽  
Mike Ominsky ◽  
Serge Ferrari

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 825.2-826
Author(s):  
M. Jansen ◽  
A. Ooms ◽  
T. D. Turmezei ◽  
J. W. Mackay ◽  
S. Mastbergen ◽  
...  

Background:In addition to cartilage degeneration, knee osteoarthritis (OA) causes bone changes, including cortical bone thickening, subchondral bone density decrease, and bone shape changes as a result of widening and flattening condyles and osteophyte formation. Knee joint distraction (KJD) is a joint-preserving treatment for younger (<65 years) knee OA patients that has been shown to reverse OA cartilage degradation. On radiographs, KJD showed a decrease in subchondral bone density and an increase in osteophyte formation. However, these bone changes have never been evaluated with a 3D imaging technique.Objectives:To evaluate cortical bone thickness, subchondral trabecular bone density, and bone shape on CT scans before and one year after KJD treatment.Methods:19 KJD patients were included in an extended imaging protocol, undergoing a CT scan before and one year after treatment. Stradview v6.0 was used for semi-automatic tibia and femur segmentation from axial thin-slice (0.45mm) CT scans. Cortical bone thickness (mm) and trabecular bone density (Hounsfield units, HU) were measured with an automated algorithm. Osteophytes were excluded. Afterwards, wxRegSurf v18 was used for surface registration. Registration data was used for bone shape measurements. MATLAB R2020a and the SurfStat MATLAB package were used for data analysis and visualization. Two-tailed F-tests were used to calculate changes over time. Two separate linear regression models were used to show the influence of baseline Kellgren-Lawrence grade and sex on the changes over time. Statistical significance was calculated with statistical parametric mapping; a p-value <0.05 was considered statistically significant. Bone shape changes were explored visually using vertex by vertex displacements between baseline and follow-up. Patients were separated into two groups based on whether their most affected compartment (MAC) was medial or lateral. Only patients with axial CT scans at both time points available for analysis were included for evaluation.Results:3 Patients did not have complete CTs and in 1 patient the imaged femur was too short, leaving 16 patients for tibial analyses and 15 patients for femoral analyses. The MAC was predominantly the medial side (medial MAC n=14; lateral n=2). Before treatment, the MAC cortical bone was compared to the rest of the joint (Figure 1). One year after treatment, MAC cortical thickness decreased, although this decrease of up to approximately 0.25 mm was not statistically significant. The trabecular bone density was also higher before treatment in the MAC, and a decrease was seen throughout the entire joint, although statistically significant only for small areas on mostly the MAC where this decrease was up to approximately 80 HU (Figure 1). Female patients and patients with a higher Kellgren-Lawrence grade showed a somewhat larger decrease in cortical bone thickness. Trabecular density decreased less for patients with a higher Kellgren-Lawrence grade, and female patients showed a higher density decrease interiorly while male patients showed a higher decrease exteriorly. None of this was statistically significant. The central areas of both compartments showed an outward shape change, while the outer ring showed inward changes.Conclusion:MAC cortical bone thickness shows a partial decrease after KJD. Trabecular bone density decreased on both sides of the joint, likely as a direct result of the bicompartmental unloading. For both subchondral bone parameters, MAC values became more similar to the LAC, indicating (partial) subchondral bone normalization in the most affected parts of the joint. The bone shape changes may indicate a reversal of typical OA changes, although the inward difference that was seen on the outer edges may be a result of osteophyte-related changes that might have affected the bone segmentation. In conclusion, KJD treatment shows subchondral bone normalization in the first year after treatment, and longer follow-up might show whether these changes are a temporary result of joint unloading or indicate more prolonged bone changes.Disclosure of Interests:None declared.


2016 ◽  
Vol 43 (10) ◽  
pp. 1914-1920 ◽  
Author(s):  
Andrea Scharmga ◽  
Michiel Peters ◽  
Astrid van Tubergen ◽  
Joop van den Bergh ◽  
Cheryl Barnabe ◽  
...  

Objective.Conventional radiographs (CR) of the hands are the gold standard for imaging bone erosions. The presence of bone erosions, reflected by the presence of cortical breaks, is a poor prognostic factor in patients with rheumatoid arthritis (RA). The availability of high-resolution peripheral quantitative computed tomography (HR-pQCT) enables detailed investigation of cortical breaks in rheumatic diseases. The aim of this image review is to show HR-pQCT images of the spectrum of cortical breaks with and without underlying trabecular bone changes in metacarpophalangeal (MCP) joints of healthy controls (HC) and patients with RA, with corresponding images on CR and magnetic resonance imaging (MRI).Methods.Second and third MCP joints of 41 patients (of which 10 were early RA with ≤ 2 years and 24 longstanding RA with ≥ 10 years of disease duration) and 38 HC were imaged by CR, MRI, and HR-pQCT (XtremeCT1, Scanco Medical AG). Representative images of the spectrum of cortical breaks were selected.Results.Cortical breaks were found in early and longstanding RA, but also in HC. They were heterogeneous in size, location, and number per joint, with a variety of surrounding cortical and underlying trabecular bone characteristics.Conclusion.Using HR-pQCT images of MCP joints, heterogeneous cortical breaks with and without surrounding trabecular bone changes were found, not only in RA but also in HC. The underlying mechanisms and significance of this spectrum of cortical breaks as found with high 3-D resolution needs further investigation.


2013 ◽  
Vol 26 (1) ◽  
pp. 37-48 ◽  
Author(s):  
S.M. Nanjundaiah ◽  
J.P. Stains ◽  
K.D. Moudgil

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation, bone erosion, and cartilage destruction in the joints. It is increasingly being realized that inflammation might play an important role in inducing bone damage in arthritis. However, there is limited validation of this concept in vivo in well-controlled experimental conditions. We addressed this issue using the adjuvant arthritis (AA) model of RA. In AA, the draining lymph nodes are the main sites of activation of pathogenic leukocytes, which then migrate into the joints leading to the induction of arthritis. We tested the temporal kinetics of mediators of bone damage [e.g., receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) and osteopontin (OPN)] and inflammation (pro-inflammatory cytokines and chemokines) in the draining lymph node cells (LNC) at different phases of AA, and then examined their inter-relationships. Our study revealed that, together with cytokines/chemokines, some of the mediators of bone remodeling are also produced in LNC. Various cytokines/chemokines showed distinct kinetics of expression as well as patterns of correlation with mediators of bone remodeling at different phases of the disease. Pro-inflammatory cytokines such as TNF-α are known to play an important role in bone damage. Interestingly, there was a positive correlation between TNF-α and RANKL, between RANKL and each of the 3 chemokines tested (RANTES, MIP-1α, and GRO/KC), and between TNF-α and RANTES. Our results in the AA model lend support to the concept of osteo-immune crosstalk during the course of autoimmune arthritis.


2001 ◽  
Author(s):  
Tara L. Arthur Moore ◽  
Lorna J. Gibson

Abstract Microdamage, in the form of small cracks, exists in healthy bone. Microdamage can be created by an overload or by repetitive motion (fatigue) during daily activities. Usually, microdamage is repaired during bone remodeling and a steady state is maintained. However, in cases of excessive microdamage creation or slowed bone remodeling, microdamage can coalesce to create a fracture. Our previous work [1,2] has investigated microdamage accumulation with increasing strain in bovine trabecular bone loaded in monotonic compression and compressive fatigue. Specimens fatigued at relatively high load levels fail after a few loading cycles, while specimens fatigued at lower load levels may undergo thousands of cycles before failure. During high cycle fatigue, microdamage may accumulate by the growth of pre-existing microcracks, as well as by the crack initiation seen in low cycle fatigue.


Sign in / Sign up

Export Citation Format

Share Document