A STUDY INTO THE COATING THICKNESS OF SHIP BALLAST TANKS
Ballast tanks are expected to be coated according to the IMO Performance Standard for Protective Coating regulations (PSPC15), in addition to the paint application requirements of the paint producer. In general, a coating system should consist of minimum two spray coats of light-colored epoxy coating on flat surfaces with a Nominal total Dry Film Thickness (NDFT) of 320 μm and 90% of all thickness measurements greater than, or equal to the NDFT and none of the remaining measurements below 0.9 x NDFT (the “90/10 rule”). Allegedly, the value of 320 μm in this PSPC15 rule may be misconstrued as a benchmark for coating application on flat surfaces, eventually leading to a non-PSPC15 compliance due to the resulting variation in coating thickness violating this 90/10 rule. This study indicates that over the years, the arithmetic mean in-situ DFT appears to be 498±18 μm and that too high and low thicknesses, below 288 μm and above 800 μm, were noted in the field. Analysis of a survey of ballast tank coating performance of ships indicates that too low thicknesses appear to be negatively impacting the average theoretical ballast tank performance. However, when an application mean DFT benchmark of 525 μm is used, the coating will almost surely comply to the 90/10 rule and the risk of falling below the 288 μm threshold is small, less than 2% in most cases. Consequently, using 320 μm as a mean DFT benchmark could result in a non-PSPC15 compliance with the in-situ ascertained coating thickness variation as this does not exclude coating thicknesses below 288 μm, which may then result in a significantly less than average theoretical coating performance. If the coating application is performed very evenly, the benchmark may be reduced to 429 μm with a probability of falling below 288 μm reduced to 0.1%. It should therefore be emphasized that the PSPC15 requirement is a coating system framework description, and that the requirement should be broadened to include a mean DFT as a coating applicator benchmark together with a clearly specified minimum and maximum DFT, in order to avoid any misinterpretations.