Etiology, Epidemiology and Management of Asian Soybean Rust (ASR) in Brazil and Vulnerability of Chemical Control of Specific without Multisite Fungicides
Brazil is the first soybean producer in the world, and the largest exporter. In the 2019/20 harvest, the country produced about 124.85 million tons, representing 30% of world production. Global soy production for 2019/20 reached 337.9 million tons. Asian soybean rust (ASR) is the most pathogen on soybean in Brazil in nowadays. Target spot and Septoria leaf spot plus white mold complete these scenarios. ASR emerged in Brazil in 1979. The use of fungicides in the soybean crop in Brazil intensified after the master of 2002 with the resurgence of soybean rust, where the use of triazoles intensified. The massive sprays to pathogen control reached 3.5 sprays per season. In 2006, the first reports of loss of sensitivity of the fungus to the group appeared, notably for the fungicide flutriafol and tebuconazole used in many situations in a curative way or to eradicate the fungus. From that moment on, the productive system sought to use triazoles and strobilurins. In 2011 came the first reports of loss of sensitivity of the fungus in the group of strobilurins. This fact was due to the use of pyraclostrobin in the vegetative phase of soybeans without protection by multisite. That same year, the introduction of the active ingredients in copper oxychloride, mancozeb and chlorothalonil took place in Brazil. In 2015, the first carboxamides ((benzovindiflupyr) (solatenol and fluxpyroxade) associated in triple mode with triazoles and strobilurins were launched on the Brazilian market. Due to the specific mode of action in the metabolism of the fungus (biosynthesis of ergosterol (triazoles), mitochondrial respiration in the cytochrome oxidase enzyme complex - QOIs (strobilurins) and succin dehydrogenase - SDHIs (carboxamides), the need for their association in the sprayings was seen. To multisite (cuprics, dithiocarbamates and nitriles). For the sustainable management of the disease in Brazil, control strategies are recommended, such as the use of systemic fungicides, with a specific biochemical mechanism of action with the adoption of tank mix with multisite, adoption of cultural practices (sanitary emptiness) and sowing schedule and the use of varieties with quantitative resistance (partial or horizontal resistance). These measures will guarantee the sustainability of the culture and the useful life of systemic fungicides or specific sites.