scholarly journals A Novel Energy Management Control technique for PV-Battery System in DC Microgrids

2021 ◽  
Author(s):  
Hadis Hajebrahimi ◽  
Sajjad Makhdoomi Kaviri ◽  
Suzan Eren ◽  
Alireza Bakhshai

This paper presents a new energy management control technique for PV-Battery system used in DC microgrids. The proposed control technique is performed based on a droop control algorithm that maintains DC-bus voltage in a desirable and required range adaptively. Tightly Regulating the bus voltage In the islanded mode of operation is very challenging. However, the proposed control method by introducing a nonlinear droop profile with four adaptive parameters shows its superiority. Adaptive parameters determined by the non-linear optimal algorithms. Tightly regulating the DC bus voltage during extensive changes in demand loads/sources within a DC Micro Grid is the responsibility of the adaptive parameters. Stability of the proposed method in the whole system for a very broad range of operating conditions are proved. Simulation results along with the experimental results verify the feasibility of the proposed approach while demonstrate its superior performance compared to the conventional control method.

2020 ◽  
Vol 35 (11) ◽  
pp. 11612-11624 ◽  
Author(s):  
Hadis Hajebrahimi ◽  
Sajjad Makhdoomi Kaviri ◽  
Suzan Eren ◽  
Alireza Bakhshai

2013 ◽  
Vol 448-453 ◽  
pp. 1727-1731
Author(s):  
Xi Yun Yang ◽  
Li Xia Li ◽  
Ya Min Zhang

The DC bus voltage is key variable for the operation of converter system in a wind power system. When grid voltage drops, a control of the DC bus voltage is needed to keep the smoothness of DC bus voltage for avoiding generator cutting off grid. A combined control method based on the grid voltage information feedforward with a crowbar circuit is proposed for a direct-drive wind power system in the paper. The unbalanced energy of the DC bus can be unleashed by the crowbar circuit during the dropping of grid voltage. At the same time, the output power of motor-side converter can be controlled to decrease according to the grid-side voltage information, and the mechanical speed of wind turbine and generator can be suppressed by the pitch angle regulation when the output power reduces. Thus, the DC-bus voltage can keep smooth. Results based on Matlab/Simulink simulation shows that this method not only improves dynamic response performance of DC bus voltages control, but also reduces the action time of crowbar circuit. It is benefit to the ability of the wind power system riding through the grid fault.


Sign in / Sign up

Export Citation Format

Share Document