scholarly journals Selective Laser Sintering of Ag Conductive Inks with a Real-Time Non-uniform Rational Basis Spline Curve Interpolator

2018 ◽  
Vol 8 (4) ◽  
pp. 153-159
Author(s):  
Chung-Wei Cheng
2018 ◽  
Vol 60 (10) ◽  
pp. 1674-1679
Author(s):  
A. I. Titkov ◽  
R. M. Gadirov ◽  
S. Yu. Nikonov ◽  
A. V. Odod ◽  
T. A. Solodova ◽  
...  

Buildings ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 68
Author(s):  
Mankyu Sung

This paper proposes a graph-based algorithm for constructing 3D Korean traditional houses automatically using a computer graphics technique. In particular, we target designing the most popular traditional house type, a giwa house, whose roof is covered with a set of Korean traditional roof tiles called giwa. In our approach, we divided the whole design processes into two different parts. At a high level, we propose a special data structure called ‘modeling graphs’. A modeling graph consists of a set of nodes and edges. A node represents a particular component of the house and an edge represents the connection between two components with all associated parameters, including an offset vector between components. Users can easily add/ delete nodes and make them connect by an edge through a few mouse clicks. Once a modeling graph is built, then it is interpreted and rendered on a component-by-component basis by traversing nodes in a procedural way. At a low level, we came up with all the required parameters for constructing the components. Among all the components, the most beautiful but complicated part is the gently curved roof structures. In order to represent the sophisticated roof style, we introduce a spline curve-based modeling technique that is able to create curvy silhouettes of three different roof styles. In this process, rather than just applying a simple texture image onto the roof, which is widely used in commercial software, we actually laid out 3D giwa tiles on the roof seamlessly, which generated more realistic looks. Through many experiments, we verified that the proposed algorithm can model and render the giwa house at a real time rate.


2019 ◽  
Vol 9 (7) ◽  
pp. 1308 ◽  
Author(s):  
Rob Kleijnen ◽  
Manfred Schmid ◽  
Konrad Wegener

This work describes the production of a spherical polybutylene terephthalate (PBT) powder and its processing with selective laser sintering (SLS). The powder was produced via melt emulsification, a continuous extrusion-based process. PBT was melt blended with polyethylene glycol (PEG), creating an emulsion of spherical PBT droplets in a PEG matrix. Powder could be extracted after dissolving the PEG matrix phase in water. The extrusion settings were adjusted to optimize the size and yield of PBT particles. After classification, 79 vol. % of particles fell within a range of 10–100 µm. Owing to its spherical shape, the powder exhibited excellent flowability and packing properties. After powder production, the width of the thermal processing (sintering) window was reduced by 7.6 °C. Processing of the powder on a laser sintering machine was only possible with difficulties. The parts exhibited mechanical properties inferior to injection-molded specimens. The main reason lied in the PBT being prone to thermal degradation and hydrolysis during the powder production process. Melt emulsification in general is a process well suited to produce a large variety of SLS powders with exceptional flowability.


Sign in / Sign up

Export Citation Format

Share Document