Tetracycline resistance genes in Pasteurella multocida isolates from bovine, ovine, caprine and swine pneumonic lungs originated from different Greek prefecturesa

2012 ◽  
Vol 6 (17) ◽  
Author(s):  
Maria Babetsa
Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 614
Author(s):  
Máximo Petrocchi-Rilo ◽  
César-B. Gutiérrez-Martín ◽  
Esther Pérez-Fernández ◽  
Anna Vilaró ◽  
Lorenzo Fraile ◽  
...  

Forty-eight Pasteurella multocida isolates were recovered from porcine pneumonic lungs collected from farms in “Castilla y León” (north-western Spain) in 2017–2019. These isolates were characterized for their minimal inhibition concentrations to twelve antimicrobial agents and for the appearance of eight resistance genes: tetA, tetB, blaROB1, blaTEM, ermA, ermC, mphE and msrE. Relevant resistance percentages were shown against tetracyclines (52.1% for doxycycline, 68.7% for oxytetracycline), sulphamethoxazole/trimethoprim (43.7%) and tiamulin (25.0%), thus suggesting that P. multocida isolates were mostly susceptible to amoxicillin, ceftiofur, enrofloxacin, florfenicol, marbofloxacin and macrolides. Overall, 29.2% of isolates were resistant to more than two antimicrobials. The tetracycline resistance genes (tetA and tetB) were detected in 22.9% of the isolates, but none were positive to both simultaneously; blaROB1 and blaTEM genes were found in one third of isolates but both genes were detected simultaneously in only one isolate. The ermC gene was observed in 41.7% of isolates, a percentage that decreased to 22.9% for msrE; finally, ermA was harbored by 16.7% and mphE was not found in any of them. Six clusters were established based on hierarchical clustering analysis on antimicrobial susceptibility for the twelve antimicrobials. Generally, it was unable to foresee the antimicrobial susceptibility pattern for each family and the association of each particular isolate inside the clusters established from the presence or absence of the resistance genes analyzed.


2003 ◽  
Vol 47 (3) ◽  
pp. 883-888 ◽  
Author(s):  
Claudio D. Miranda ◽  
Corinna Kehrenberg ◽  
Catherine Ulep ◽  
Stefan Schwarz ◽  
Marilyn C. Roberts

ABSTRACT Twenty-five distinct tetracycline-resistant gram-negative bacteria recovered from four Chilean fish farms with no history of recent antibiotic use were examined for the presence of tetracycline resistance (tet) genes. Sixty percent of the isolates carried 1 of the 22 known tet genes examined. The distribution was as follows. The tet(A) gene was found in six isolates. The tet(B) gene was found in two isolates, including the first description in the genus Brevundimonas. Two isolates carried the tet(34) and tet(B) genes, including the first description of the tet(34) gene in Pseudomonas and Serratia and the first description of the tet(B) gene in Pseudomonas. The tet(H) gene was found in two isolates, which includes the first description in the genera Moraxella and Acinetobacter. One isolate carried tet(E), and one isolate carried tet(35), the first description of the gene in the genus Stenotrophomonas. Finally, one isolate carried tet(L), found for the first time in the genus Morganella. By DNA sequence analysis, the two tet(H) genes were indistinguishable from the previously sequenced tet(H) gene from Tn5706 found in Pasteurella multocida. The Acinetobacter radioresistens isolate also harbored the Tn5706-associated 1,063-bp IS element IS1597, while the Moraxella isolate carried a 1,026-bp IS-like element whose 293-amino-acid transposase protein exhibited 69% identity and 84% similarity to the transposase protein of IS1597, suggesting the presence of a novel IS element. The distribution of tet genes from the Chilean freshwater ponds was different than those that have previously been described from other geographical locations, with 40% of the isolates carrying unidentified tetracycline resistance genes.


Author(s):  
Máximo Patrocchi-Rilo ◽  
César-B. Gutiérrez-Martín ◽  
Esther Pérez-Fernández ◽  
Anna Vilaró ◽  
Lorenzo Fraile ◽  
...  

Forty-eight Pasteurella multocida isolates were recovered from porcine pneumonic lungs collected in Norwestern Spain (2017- 2019). These isolates were characterized for their minimal inhibition concentrations to twelve antimicrobial agents and for the appearance of eight resistance genes: tetA, tetB, blaROB1, blaTEM, ermA, ermC, mphE and msrE. Relevant resistance percentages were shown to teracyclines, sulphamethoxazole/trimethoprim and tiamulin, thus suggesting that P. multocida isolates were mostly susceptible to amoxicillin, ceftiofur, enrofloxacin, florfenicol, marbofloxacin and macrolides. 29.2% of isolates were resistant to more than two antimicrobials. The tetracycline resistance genes (tetA and tetB) were detected in 22.9% of the isolates, but none was positive to both simultaneously; blaROB1 and blaTEM genes were found in one third of isolates but both genes were detected simultaneously in only one isolate. ermC gene was observed in 41.7% of isolates, a percentage that decreased until 22.9% for msrE; finally, ermA was harboured by 16.7% and mphE was not found in any of them. Six clusters were established based on hierarchical clustering analysis on antimicrobial susceptibility for the twelve antimicrobials. Generally, it was unable to foresee the antimicrobial susceptibility pattern for each family and the association of each particular isolate inside the clusters established from the presence or absence of the resistance genes analyzed.


2006 ◽  
Vol 72 (12) ◽  
pp. 7813-7820 ◽  
Author(s):  
Archana Jindal ◽  
Svetlana Kocherginskaya ◽  
Asma Mehboob ◽  
Matthew Robert ◽  
Roderick I. Mackie ◽  
...  

ABSTRACT Chlortetracycline and the macrolide tylosin were identified as commonly used antimicrobials for growth promotion and prophylaxis in swine production. Resistance to these antimicrobials was measured throughout the waste treatment processes at five swine farms by culture-based and molecular methods. Conventional farm samples had the highest levels of resistance with both culture-based and molecular methods and had similar levels of resistance despite differences in antimicrobial usage. The levels of resistance in organic farm samples, where no antimicrobials were used, were very low by a culture-based method targeting fecal streptococci. However, when the same samples were analyzed with a molecular method detecting methylation of a specific nucleotide in the 23S rRNA that results in resistance to macrolides, lincosamides, and streptogramin B (MLSB), an unexpectedly high level of resistant rRNA (approximately 50%) was observed, suggesting that the fecal streptococci were not an appropriate target group to evaluate resistance in the overall microbial community and that background levels of MLSB resistance may be substantial. All of the feed samples tested, including those from the organic farm, contained tetracycline resistance genes. Generally, the same tetracycline resistance genes and frequency of detection were found in the manure and lagoon samples for each commercial farm. The levels of tetracycline and MLSB resistance remained high throughout the waste treatment systems, suggesting that the potential impact of land application of treated wastes and waste treatment by-products on environmental levels of resistance should be investigated further.


2019 ◽  
Vol 48 (1) ◽  
pp. 171-178 ◽  
Author(s):  
Melanie Couch ◽  
Getahun E. Agga ◽  
John Kasumba ◽  
Rohan R. Parekh ◽  
John H. Loughrin ◽  
...  

2009 ◽  
Vol 53 (6) ◽  
pp. 2693-2695 ◽  
Author(s):  
Kevin S. Akers ◽  
Katrin Mende ◽  
Heather C. Yun ◽  
Duane R. Hospenthal ◽  
Miriam L. Beckius ◽  
...  

ABSTRACT Infections with multidrug-resistant Acinetobacter baumannii-Acinetobacter calcoaceticus complex bacteria complicate the care of U.S. military personnel and civilians worldwide. One hundred thirty-three isolates from 89 patients at our facility during 2006 and 2007 were tested by disk diffusion, Etest, and broth microdilution for susceptibility to tetracycline, doxycycline, minocycline, and tigecycline. Minocycline was the most active in vitro, with 90% of the isolates tested susceptible. Susceptibilities varied significantly with the testing method. The acquired tetracycline resistance genes tetA, tetB, and tetA(39) were present in the isolates.


Sign in / Sign up

Export Citation Format

Share Document