scholarly journals Marker-assisted selection of bacterial blight broad spectrum resistance genes Xa33 and Xa38 into CO43 in ICF3 generation

2018 ◽  
Vol 9 (3) ◽  
pp. 978
Author(s):  
R. Vennisa ◽  
N. Kumaravadivel ◽  
A. Ramanathan
Plant Disease ◽  
2016 ◽  
Vol 100 (2) ◽  
pp. 380-387 ◽  
Author(s):  
Gerbert Sylvestre Dossa ◽  
Ricardo Oliva ◽  
Edgar Maiss ◽  
Casiana Vera Cruz ◽  
Kerstin Wydra

Rice bacterial blight (BB) is caused by Xanthomonas oryzae pv. oryzae and is responsible for substantial yield loss worldwide. Host resistance remains the most feasible control measure. However, pathogen variability leads to the failure of certain resistance genes to control the disease, and climate change with high amplitudes of heat predisposes the host plant to pathogen invasion. Due to pressure in natural selection, landrace species often carry a wide range of unique traits conferring tolerance of stress. Therefore, exploring their genetic background for host resistance could enable the identification of broad-spectrum resistance to combined abiotic and biotic stresses. Nineteen Oryza glaberrima accessions and O. sativa rice variety SUPA were evaluated for BB resistance under high temperature (35 and 31°C day and night, respectively) using 14 X. oryzae pv. oryzae strains originated from the Philippines. Under normal temperature, most of the accessions showed resistance to 9 strains (64.3%) and accession TOG6007 showed broad-spectrum resistance to 12 strains (85.7%). Under high temperature, most accessions showed a reduction in BB disease, whereas, accession TOG5620 showed disease reduction from all the X. oryzae pv. oryzae strains under high temperature. Molecular characterization using gene-based and linked markers for BB resistance genes Xa4, xa5, Xa7, xa13, and Xa21 revealed the susceptible alleles of Xa4, xa5, xa13, and Xa21 in O. glaberrima. However, no allele of Xa7 was detected among O. glaberrima accessions. Our results suggest that O. glaberrima accessions contain a BB resistance different from the Xa gene type. Genome-wide association mapping could be used to identify quantitative trait loci that are associated with BB resistance or combined BB resistance and high-temperature tolerance.


Rice ◽  
2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Sharat Kumar Pradhan ◽  
Deepak Kumar Nayak ◽  
Soumya Mohanty ◽  
Lambodar Behera ◽  
Saumya Ranjan Barik ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
pp. 108-116
Author(s):  
A. J. Kotasthane ◽  
N. J. Gaikwad

Bacterial leaf blight, caused by the Gram negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), is a serious disease throughout the rice growing world. Resistant cultivars are the primary and most effective means of control. Marker assisted selection (MAS) can help in screening more efficiently for the presence or absence of resistant genes. Molecular markers have made it possible to identify and pyramid valuable genes of agronomic importance in resistance rice breeding. In the present study, to incorporate durable resistance against bacterial blight three resistance genes, xa 5, xa13 and Xa21, from an indica donor IRBB 59 were introgressed into high yielding susceptible rice cultivar Karma Mahsuri. Karma Mahsuri is one of the most popular varieties of Chhattisgarh and mega varieties of India. These three genes were pyramided through marker-assisted breeding. For MAS of xa5:- RG556, RM122, RM390, RM13;  xa13:-RG136 and RM 230 and  Xa21: Xa21 and RM21 are the known linked markers. Markers xa5R and xa5S specific for xa5 resistant and susceptible genes respectively, xa13Pro for xa13 gene and PT248 for Xa21 gene obtained from Dr Sundaram (DRR, Hyderabad) were also used in the present study for MAS. High-resolution maps generated in silico around xa5 and xa13 will be useful for the precise placement of a gene of interest and the analysis of regional and sub-regional rates of recombination and appropriate combinations of markers for marker assisted selection in plant-breeding. In Karma Mahsuri X IRBB 59 cross we got Three lines (03)containing three gene (xa5, xa13 and Xa21), Twenty three (23) line contain a combination of xa5 & xa13,  only one (01) with xa5 and Xa21. There were eight lines with xa5 gene Seventeen (17) lines with xa13 gene. We therefore report herein the development of nil, two and three gene pyramids of  xa5, xa13 and Xa21 in the background of Karma Mahsuri. Key words: bacterial blight (BB), Broad-spectrum resistance, Gene pyramiding marker-assisted selection (MAS), Rice.


Rice ◽  
2017 ◽  
Vol 10 (1) ◽  
Author(s):  
Chaivarakun Chaipanya ◽  
Mary Jeanie Telebanco-Yanoria ◽  
Berlaine Quime ◽  
Apinya Longya ◽  
Siripar Korinsak ◽  
...  

2001 ◽  
Vol 45 (7) ◽  
pp. 1982-1989 ◽  
Author(s):  
Adriana E. Rosato ◽  
Bonnie S. Lee ◽  
Kevin A. Nash

ABSTRACT Corynebacterium jeikeium is an opportunistic pathogen primarily of immunocompromised (neutropenic) patients. Broad-spectrum resistance to antimicrobial agents is a common feature of C. jeikeium clinical isolates. We studied the profiles of susceptibility of 20 clinical strains of C. jeikeium to a range of antimicrobial agents. The strains were separated into two groups depending on the susceptibility to erythromycin (ERY), with one group (17 strains) representing resistant organisms (MIC > 128 μg/ml) and the second group (3 strains) representing susceptible organisms (MIC ≤ 0.25 μg/ml). The ERY resistance crossed to other members of the macrolide-lincosamide-streptogramin B (MLSb) group. Furthermore, this resistance was inducible with MLSb agents but not non-MLSb agents. Expression of ERY resistance was linked to the presence of an allele of the class X erm genes,erm(X)cj, with >93% identity to other ermgenes of this class. Our evidence indicates that erm(X)cj is integrated within the chromosome, which contrasts with previous reports for the plasmid-associated erm(X) genes found inC. diphtheriae and C. xerosis. In 40% ofC. jeikeium strains, erm(X)cj is present within the transposon, Tn5432. However, in the remaining strains, the components of Tn5432 (i.e., the erm and transposase genes) have separated within the chromosome. The rearrangement of Tn5432 leads to the possibility that the other drug resistance genes have become included in a new composite transposon bound by the IS1249 elements.


Sign in / Sign up

Export Citation Format

Share Document