scholarly journals New monoclonal antibodies against bilitranslocase as a diagnostic tool in determining the progress of clear cell renal cell carcinoma

2017 ◽  
Vol 86 (5-6) ◽  
Author(s):  
Alexandra Bogožalec Košir ◽  
Tjaša Lukan ◽  
Mateja Kukovec ◽  
Sendi Montanič ◽  
Vivijana Snoj ◽  
...  

Background: Monoclonal antibodies (mAbs) are an important tool in diagnostics and research, especially when we are dealing with a protein marker of unknown primary structure as in the case of bilitranslocase (BTL). BTL is also expressed on kidney cells, where it acts as an organic anion transporter. We have shown earlier that there are differences in bilitranslocase expression in normal kidney cells versus early grade kidney cancer.Methods: We developed monoclonal antibodies against extra- and intra-cellular domains of bilitranslocase protein model. To also gain a deeper insight in bilitranslocase expression in clinical samples, we assessed BTL expression in different grades of clear cell kidney cell carcinoma (ccRCC).Results: Both new monoclonal antibodies bind to a protein in UOK171 cells but not in the negative control. Binding of mAb is specifc. mAb produced by cell line 2A9/2E9 (peptide 298–310; intracellular domain) is more suitable for immunohistochemical analyses as it gives stronger intensity of binding than mAb produced by cell line 11C9/2G9 (peptide 235–246; extracellular domain). Antibody 2A9/2E9 stains bilitranslocase in proximal renal tubules of normal kidneys but not in the surrounding stroma. Staining decreases in grade I compared to normal kidney, gradually increases in grades II and III, and decreases again in grade IV of ccRCC tissue.Conclusions: Our results show that these antibodies can be used in different immunoassays. Furthermore, specificity and afnity of our mAbs allowed us to use them in the analysis of progressive grades of clear cell renal cell carcinoma in a limited number of patients. Tus, mAbs developed here can be used as a diagnostic tool that could help distinguish between early and late grades of clear cell renal cell carcinoma.

2015 ◽  
Vol 69 (6) ◽  
pp. 497-504 ◽  
Author(s):  
Zhengzuo Sheng ◽  
Yang Liu ◽  
Caipeng Qin ◽  
Zhenhua Liu ◽  
Yeqing Yuan ◽  
...  

OBJECTIVE:To investigate if IgG can be expressed in clear cell renal cell carcinoma (cRCC) , and the expression of IgG is involved in the cancer progression. If IgG expression can serve as a potential target in cancer therapies and be used for judging the prognosis.MATERIALS AND METHODS:By immunohistochemistry, we detected IgG in cRCC tissues(75 cRCC tissues and75 adjacent normal kidney tissues). Immunofluorescence and Western blot was used to detect the IgG in cRCC cell lines (786-0, ACHN and CAKI-I). By RT-PCR, the functional transcript of IgG heavy chain was detected. Knockdown of IgG was to analyze the proliferation, migration and invasion ability by CCK8, Transwell and Matrigel and apoptosis in cRCC cell lines.RESULTS:By immunohistochemistry, we found strong staining of IgG in 66 cases of 75 cRCC tissues and 63 cases of 75 adjacent normal kidney tissues. Immunofluorescence and Western blot was found IgG in cRCC cell lines. Knock-down IgG in cRCC cell lines resulted in significant inhibition of cell proliferation, migration and invasion, and the induction of apoptosis of the 786-0 cells. The immunohistochemistry analysis showed that high IgG expression significantly correlated with the poor differentiation and advanced stage of cRCC.CONCLUSION:IgG was over expressed in cRCC and was involved in the proliferation, migration and invasion of cancer cells. IgG expression may serve as a potential target in cancer therapies and could be used for judging the prognosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Luyang Xiong ◽  
Yuchen Feng ◽  
Wei Hu ◽  
Jiahong Tan ◽  
Shusheng Li ◽  
...  

Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer worldwide, and appropriate cancer biomarkers facilitate early diagnosis, treatment, and prognosis prediction in cancer management. However, an accurate biomarker for ccRCC is lacking. This study identified 356 differentially expressed genes in ccRCC tissues compared with normal kidney tissues by integrative analysis of eight ccRCC datasets. Enrichment analysis of the differentially expressed genes unveiled improved adaptation to hypoxia and metabolic reprogramming of the tumor cells. Aldehyde oxidase 1 (AOX1) gene was identified as a biomarker for ccRCC among all the differentially expressed genes. ccRCC tissues expressed significantly lower AOX1 than normal kidney tissues, which was further validated by immunohistochemistry at the protein level and The Cancer Genome Atlas (TCGA) data mining at the mRNA level. Higher AOX1 expression predicted better overall survival in ccRCC patients. Furthermore, AOX1 DNA copy number deletion and hypermethylation were negatively correlated with AOX1 expression, which might be the potential mechanism for its dysregulation in ccRCC. Finally, we illustrated that the effect of AOX1 as a tumor suppressor gene is not restricted to ccRCC but universally exists in many other cancer types. Hence, AOX1 may act as a potential prognostic biomarker and therapeutic target for ccRCC.


2016 ◽  
Vol 311 (2) ◽  
pp. F424-F436 ◽  
Author(s):  
Mohammed I. Khan ◽  
Konrad J. Dębski ◽  
Michał Dabrowski ◽  
Anna M. Czarnecka ◽  
Cezary Szczylik

In recent years, genome-wide RNA expression analysis has become a routine tool that offers a great opportunity to study and understand the key role of genes that contribute to carcinogenesis. Various microarray platforms and statistical approaches can be used to identify genes that might serve as prognostic biomarkers and be developed as antitumor therapies in the future. Metastatic renal cell carcinoma (mRCC) is a serious, life-threatening disease, and there are few treatment options for patients. In this study, we performed one-color microarray gene expression (4×44K) analysis of the mRCC cell line Caki-1 and the healthy kidney cell line ASE-5063. A total of 1,921 genes were differentially expressed in the Caki-1 cell line (1,023 upregulated and 898 downregulated). Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA) approaches were used to analyze the differential-expression data. The objective of this research was to identify complex biological changes that occur during metastatic development using Caki-1 as a model mRCC cell line. Our data suggest that there are multiple deregulated pathways associated with metastatic clear cell renal cell carcinoma (mccRCC), including integrin-linked kinase (ILK) signaling, leukocyte extravasation signaling, IGF-I signaling, CXCR4 signaling, and phosphoinositol 3-kinase/AKT/mammalian target of rapamycin signaling. The IPA upstream analysis predicted top transcriptional regulators that are either activated or inhibited, such as estrogen receptors, TP53, KDM5B, SPDEF, and CDKN1A. The GSEA approach was used to further confirm enriched pathway data following IPA.


PPAR Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Ruizhe Mao ◽  
Jian Shi ◽  
Xuyi Ma ◽  
Haiyan Xu

Clear cell renal cell carcinoma (ccRCC) is the major pathological pattern of renal cell carcinoma. The ccRCC cells exhibit a certain degree of inherent drug resistance due to some genetic mutations. In recent years, peroxisome proliferator-activated receptor-α (PPARα) antagonists have been reported as a targeted therapeutic drug capable of inducing apoptosis and cell cycle arrest in the ccRCC cell line. Autophagy, which can be induced by stress in eukaryotic cells, plays a complex role in the proliferation, survival, and death of tumor cells. In our study, we found that the expression of PPARα was low in highly differentiated ccRCC tissues and 786-O cell line but high in poorly differentiated ccRCC tissues. The level of PPARα expression in ccRCC tissues is correlated to the grade of differentiation, but not to the sex or age of ccRCC patients. The findings also revealed that the PPARα antagonist GW6471 can lower cell viability and induce autophagy in the 786-O ccRCC cell line. This autophagy can be inhibited by hydroxychloroquine. When treated with a combination of hydroxychloroquine and GW6471, the viability of the 786-O cells was decreased further when compared to the treatment with GW6471 or hydroxychloroquine alone, and apoptosis was promoted. Meanwhile, when human kidney 2 cells were cotreated with hydroxychloroquine and GW6471, cell viability was only slightly influenced. Hence, our finding indicates that the combination of GW6471 and hydroxychloroquine may constitute a novel and potentially effective treatment for ccRCC. Furthermore, this approach is likely to be safe owing to its minimal effects on normal renal tissues.


Sign in / Sign up

Export Citation Format

Share Document