scholarly journals Development of the forward and inverse kinematic models for the Advanced Deburring and Chamfering System (ADACS) industrial robot

1992 ◽  
Author(s):  
Keith A Stouffer
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chong Wang ◽  
Dongxue Liu ◽  
Qun Sun ◽  
Tong Wang

This paper presents a kinematic analysis for an open architecture 6R robot controller, which is designed to control robots made by domestic manufactures with structural variations. Usually, robot kinematic studies are often introduced for specific robot types, and therefore, difficult to apply the kinematic model from one to another robot. This study incorporates most of the robot structural variations in one model so that it is convenient to switch robot types by modifying model parameters. By combining an adequate set of parameters, the kinematic models, especially the inverse kinematics, are derived. The kinematic models are proved to be suitable for many classic industrial robot types, such as Puma560, ABB IRB120/1600, KAWASAKI RS003N/RS010N, FANUC M6iB/M10iA, and therefore be applicable to those with similar structures. The analysis and derivation of the forward and inverse kinematic models are presented, and the results are proven to be accurate.


Author(s):  
Fusaomi Nataga ◽  
Maki K. Habib ◽  
Keigo Watanabe

In making neural networks learn nonlinear relations effectively, it is desired to have appropriate training sets. In the proposed method, after a certain number of iterations, input-output pairs having worse errors are extracted from the original training set and form a new temporary set. From the following iteration, the temporary set is applied to the neural networks instead of the original set. In this case, only pairs with worse errors are used for updating the weights until the mean value of errors decreases to a desired level. Once the learning is conducted using the temporary set, the original set is applied again instead of the temporary set. The effectiveness of the proposed approach is demonstrated through simulations using kinematic models of a leg module with a serial link structure and an industrial robot.


Author(s):  
Tuna Balkan ◽  
M. Kemal Özgören ◽  
M. A. Sahir Arikan ◽  
H. Murat Baykurt

Abstract A semi-analytical method and a computer program are developed for inverse kinematics solution of a class of robotic manipulators, in which four joint variables are contained in wrist point equations. For this case, it becomes possible to express all the joint variables in terms of a joint variable, and this reduces the inverse kinematics problem to solving a nonlinear equation in terms of that joint variable. The solution can be obtained by iterative methods and the remaining joint variables can easily be computed by using the solved joint variable. Since the method is manipulator dependent, the equations will be different for kinematically different classes of manipulators, and should be derived analytically. A significant benefit of the method is that, the singular configurations and the multiple solutions indicated by sign ambiguities can be determined while deriving the inverse kinematic expressions. The developed method is applied to a six-revolute-joint industrial robot, FANUC Arc Mate Sr.


Author(s):  
Tuna Balkan ◽  
M. Kemal Özgören ◽  
M. A. Sahir Arikan ◽  
H. Murat Baykurt

Abstract In this study, an inverse kinematic solution approach applicable to six degree-of-freedom industrial robotic manipulators is introduced. The approach is based on a previously introduced kinematic classification of industrial robotic manipulators by Balkan et al. (1999), and depending on the kinematic structure, either an analytical or a semi-analytical inverse kinematic solution is obtained. The semi-analytical method is named as the parametrized joint variable (PJV) method. Compact forward kinematic equations obtained by utilizing the properties of exponential rotation matrices. In the inverse kinematic solutions of the industrial robots surveyed in the previous study, most of the simplified compact equations can be solved analytically and the remaining few of them can be solved semi-analytically through a numerical solution of a single univariate equation. In these solutions, the singularities and the multiple configurations of the manipulators can be determined easily. By the method employed in this study, the kinematic and inverse kinematic analysis of any manipulator or designed-to-be manipulator can be performed and using the solutions obtained, the inverse kinematics can also be computerized by means of short and fast algorithms. As an example for the demonstration of the applicability of the presented method to manipulators with closed-chains, ABB IRB2000 industrial robot is selected which has a four-bar mechanism for the actuation of the third link, and its compact forward kinematic equations are given as well as the inverse kinematic solution.


Author(s):  
G. Sharma ◽  
M. Badescu ◽  
A. Dubey ◽  
C. Mavroidis ◽  
T. Sessa ◽  
...  

Kinematic and workspace analyses are performed to predict the performance of a new nanoscale biomolecular motor: The Viral Protein Linear (VPL) Motor. The motor is based on a conformational change observed in a family of viral envelope proteins when subjected to a changing pH environment. The conformational change produces a motion of about 10 nm, making the VPL a basic linear actuator, which can be further interfaced with other organic/inorganic nanoscale components such as DNA actuators and carbon nanotubes. This paper presents the principle of operation of the VPL motor and the development of direct and inverse kinematic models for workspace analysis. Preliminary results obtained from the developed computational tools are presented.


2007 ◽  
Vol 339 ◽  
pp. 177-182 ◽  
Author(s):  
Yan Ling Tian ◽  
Da Wei Zhang ◽  
Bing Yan

In order to improve the machining accuracy of the precision surface grinding machine, a 3-DOF micropositioning table is used as an auxiliary table to form the dual infeed system with nanometer level positioning accuracy. This paper mainly deals with the static characteristics of the micropositioning table. The direct and inverse kinematic models are obtained under different orientation descriptions, and the inherent relationship between different orientation descriptions is investigated. By use of Eular angle description, the reachable orientation space of the micro-positioning table is obtained. The theoretical static stiffness on the top surface of the table is also given, and the experimental tests are carried out to verify the established models.


2019 ◽  
Vol 5 (5/6) ◽  
pp. 333-341
Author(s):  
Kshitish Kumar Dash ◽  
Bibhuti B. Choudhury ◽  
Sukanta K. Senapati

2013 ◽  
Vol 373-375 ◽  
pp. 206-212
Author(s):  
Qiang Liu ◽  
Yu Han ◽  
Min Hao Liu ◽  
Shang Fei Tian

A dynamic simulation system whose model objects were industrial robot was designed. An advanced and quickly inverse kinematic algorithm was used to solve inverse kinematic equation for 6DOF industrial robot, the time of solve was improved. The method of trajectory planning was developed. The vision simulation for industrial robot was completed by Creator and Vega software. Simulation result shows that the requirement of kinematic control has been achieved and provides an intuitive and convenient tool for research of the kinematic control algorithm for industrial robot.


Sign in / Sign up

Export Citation Format

Share Document