scholarly journals Design and Cold Test of Semi-Freejet High Altitude Environment Simulation Test Facility for High-Speed Vehicle

2018 ◽  
Vol 22 (2) ◽  
pp. 115-124
Author(s):  
Seongmin Lee ◽  
Isang Yu ◽  
Jinsu Park ◽  
Youngsung Ko ◽  
Sunjin Kim ◽  
...  
2018 ◽  
Vol 237 ◽  
pp. 03014
Author(s):  
Xue Lian ◽  
Nan Hua ◽  
Liu Jiaqi ◽  
Liu Xin ◽  
Meng Gang

The large-sized space environmental simulation test facility is mainly used for providing thermal radiation environment in high-vacuum, cold and dark space for satellites, spacecraft, lunar spacecraft to carry out whole satellite thermal vacuum test and for large equipment like antenna to carry out tests in TV conditions. Monitoring the spacecraft’s surface optical image or temperature is a main task in space environment simulation test. In previous tests, optical image test mainly took place in a fixed position, so the measuring location and angle are limited. This paper focuses on large spherical space environmental simulation test facility, and designs a large arc-shape high-precision walking device in a space environment simulation test device. It introduces key technology in detail like structure design, thermal design, processes and manufacturing, etc. The test results show that this device can work steadily and reliably under simulation space environments, and the precision exceeds 0.5°.


Author(s):  
Brendan Paxton ◽  
Samir B. Tambe ◽  
San-Mou Jeng

Novel advances in gas turbine combustor technology, led by endeavors into fuel efficiency and demanding environmental regulations, have been fraught with performance and safety concerns. While the majority of low emissions gas turbine engine combustor technology has been necessary for power-generation applications, the push for ultra-low NOx combustion in aircraft jet engines has been ever present. Recent state-of-the-art combustor designs notably tackle historic emissions challenges by operating at fuel-lean conditions, which are characterized by an increase in the amount of air flow sent to the primary combustion zone. While beneficial in reducing NOx emissions, the fuel-lean mechanisms that characterize these combustor designs rely heavily upon high-energy and high-velocity air flows to sufficiently mix and atomize fuel droplets, ultimately leading to flame stability concerns during low-power operation. When operating at high-altitude conditions, these issues are further exacerbated by the presence of low ambient air pressures and temperatures, which can lead to engine flame-out situations and hamper engine relight attempts. To aid academic and commercial research ventures into improving the high-altitude lean blow-out (LBO) and relight performance of modern aero turbine combustor technologies, the High-Altitude Relight Test Facility (HARTF) was designed and constructed at the University of Cincinnati Combustion & Fire Research Laboratory (CFRL). This paper presents an overview of its design and an experimental evaluation of its abilities to facilitate optically-accessible combustion and spray testing for aero engine combustor hardware at simulated high-altitude conditions. Extensive testing of its vacuum and cryogenic air-chilling capabilities was performed with regard to end-user control — the creation and the maintenance of a realistic high-altitude simulation — providing a performance limit reference when utilizing the modularity of the facility to implement different aero turbine combustor hardware. Ignition testing was conducted at challenging high-altitude windmilling conditions with a linearly-arranged five fuel-air swirler array to replicate the implementation of a multi-cup gas turbine combustor sector and to evaluate suitable diagnostic tools for the facility. High-speed imaging, for example, was executed during the ignition process to observe flame kernel generation and propagation throughout the primary, or near-field, combustion zones. In the evaluation performed, the HARTF was found to successfully simulate the atmospheric environments of altitudes ranging from sea level to beyond 10,700 m for the employed combustor sector. Diagnostic methods found compatible with the facility include high-speed flame imaging, combustion emission analysis, laser light sheet spray visualization, phase Doppler particle analysis (PDPA), and high-speed particle image velocimetry (HSPIV). Herein discussed are correlations drawn — linking altitude simulation capability to the size of the implemented combustor hardware — and challenges found — vacuum sealing, low pressure fuel injection, fuel vapor autoignition, and frost formation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Vel Murugan Gomathy ◽  
T. V. Paramasivam Sundararajan ◽  
C. Sengodan Boopathi ◽  
Pandiyan Venkatesh Kumar ◽  
Krishnamoorthy Vinoth Kumar ◽  
...  

AbstractIn the present study, the application of free space optics (FSO) transmission system to realize a long-reach high-altitude platform (HAP)-to-satellite communication link has been exploited. High-speed information transmission without interference is accomplished using orthogonal frequency division multiplexing (OFDM). Further, the information capacity of the proposed system is increased by employing mode division multiplexing (MDM). We have investigated the proposed MDM-OFDM-HAP-to-satellite FSO transmission system performance over varying FSO range, diameter of the receiver, pointing errors, and input power. Also, an improved transmission performance of the proposed system using a square root module is reported.


1974 ◽  
Vol 96 (2) ◽  
pp. 193-203 ◽  
Author(s):  
J. K. Hedrick ◽  
G. F. Billington ◽  
D. A. Dreesbach

This article applies state variable techniques to high speed vehicle suspension design. When a reasonably complex suspension model is treated, the greater adaptability of state variable techniques to digital computer application makes it more attractive than the commonly used integral transform method. A vehicle suspension model is developed, state variable techniques are applied, numerical methods are presented, and, finally, an optimization algorithm is chosen to select suspension parameters. A fairly complete bibliography is included in each of these areas. The state variable technique is illustrated in the solution of two suspension optimization problems. First, the vertical plane suspension of a high speed vehicle subject to guideway and aerodynamic inputs will be analyzed. The vehicle model, including primary and secondary suspension systems, and subject to both heave and pitch motions, has thirteen state variables. Second, the horizontal plane suspension of a high speed vehicle subject to guideway and lateral aerodynamic inputs is analyzed. This model also has thirteen state variables. The suspension parameters of both these models are optimized. Numerical results are presented for a representative vehicle, showing time response, mean square values, optimized suspension parameters, system eigenvalues, and acceleration spectral densities.


Sign in / Sign up

Export Citation Format

Share Document