scholarly journals Fully Dynamic Transitive Closure in Plane Dags with one Source and one Sink

1994 ◽  
Vol 1 (30) ◽  
Author(s):  
Thore Husfeldt

We give an algorithm for the Dynamic Transitive Closure Problem for planar directed acyclic graphs with one source and one sink. The graph can be updated in logarithmic time under arbitrary edge insertions and deletions that preserve the embedding. Queries of the form `is there a directed path from u to v ?' for arbitrary vertices u and v can be answered in logarithmic time. The size of the data structure and the initialisation time are linear in the number of edges.<br /> <br />The result enlarges the class of graphs for which a logarithmic (or even polylogarithmic) time dynamic transitive closure algorithm exists. Previously, the only algorithms within the stated resource bounds put restrictions on the topology of the graph or on the delete operation. To obtain our result, we use a new characterisation of the transitive closure in plane graphs with one source and one sink and introduce new techniques to exploit this characterisation.<br /> <br />We also give a lower bound of Omega(log n/log log n) on the amortised complexity of the problem in the cell probe model with logarithmic word size. This is the first dynamic directed graph problem with almost matching lower and upper bounds.

Author(s):  
Yves Marcoux ◽  
Michael Sperberg-McQueen ◽  
Claus Huitfeldt

The problem of overlapping structures has long been familiar to the structured document community. In a poem, for example, the verse and line structures overlap, and having them both available simultaneously is convenient, and sometimes necessary (for example for automatic analyses). However, only structures that embed nicely can be represented directly in XML. Proposals to address this problem include XML solutions (based essentially on a layer of semantics) and non-XML ones. Among the latter is TexMecs HS2003, a markup language that allows overlap (and many other features). XML documents, when viewed as graphs, correspond to trees. Marcoux M2008 characterized overlap-only TexMecs documents by showing that they correspond exactly to completion-acyclic node-ordered directed acyclic graphs. In this paper, we elaborate on that result in two ways. First, we cast it in the setting of a strictly larger class of graphs, child-arc-ordered directed graphs, that includes multi-graphs and non-acyclic graphs, and show that — somewhat surprisingly — it does not hold in general for graphs with multiple roots. Second, we formulate a stronger condition, full-completion-acyclicity, that guarantees correspondence with an overlap-only document, even for graphs that have multiple roots. The definition of fully-completion-acyclic graph does not in itself suggest an efficient algorithm for checking the condition, nor for computing a corresponding overlap-only document when the condition is satisfied. We present basic polynomial-time upper bounds on the complexity of accomplishing those tasks.


1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


Author(s):  
S. Yahya Mohamed ◽  
A. Mohamed Ali

In this paper, the notion of energy extended to spherical fuzzy graph. The adjacency matrix of a spherical fuzzy graph is defined and we compute the energy of a spherical fuzzy graph as the sum of absolute values of eigenvalues of the adjacency matrix of the spherical fuzzy graph. Also, the lower and upper bounds for the energy of spherical fuzzy graphs are obtained.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 940
Author(s):  
Zijing Wang ◽  
Mihai-Alin Badiu ◽  
Justin P. Coon

The age of information (AoI) has been widely used to quantify the information freshness in real-time status update systems. As the AoI is independent of the inherent property of the source data and the context, we introduce a mutual information-based value of information (VoI) framework for hidden Markov models. In this paper, we investigate the VoI and its relationship to the AoI for a noisy Ornstein–Uhlenbeck (OU) process. We explore the effects of correlation and noise on their relationship, and find logarithmic, exponential and linear dependencies between the two in three different regimes. This gives the formal justification for the selection of non-linear AoI functions previously reported in other works. Moreover, we study the statistical properties of the VoI in the example of a queue model, deriving its distribution functions and moments. The lower and upper bounds of the average VoI are also analysed, which can be used for the design and optimisation of freshness-aware networks. Numerical results are presented and further show that, compared with the traditional linear age and some basic non-linear age functions, the proposed VoI framework is more general and suitable for various contexts.


Sign in / Sign up

Export Citation Format

Share Document