scholarly journals Cryogenic soils in the Vilyuy River Valley (Yakutia)

Author(s):  
Yurij Kirillovich Vasil'chuk ◽  
Jessica Yur'evna Vasil'chuk ◽  
Alexander Pavlovich Ginzburg

The object of this research is the cryogenic soils of the territory located in Central Yakutia, in the middle reach of Vilyuy River nearby Makhatta Tukulan with middle-taiga larch woods landscapes. In July 2021, on the right and left banks of the Vilyuy River, twelve soil sections have been formed, which relate to turf-podzols and turf-sub-units of the illovial-ferruginous, sod and alluvial sod, psammozems and stratozems according to to classification and diagnostics of Russian soils (2004). On the slope of the river valley was also formed the soil catena that included elementary geochemical landscapes of river terraces tops and slopes surfaces, as well as middle and high floodplains on the slopes of thermofusional funnels. Soil sections were also formed in flooded beam bottom and well-drained ravine bottom, on sub-horizontal Makhatta Tukulan surface, bottoms and  slopes of thermo-suffosional funnels. The study involves 46 soil samples for measuring the acidity level (pH), electric conductivity (EC), and concentration of total disolved solids (TDS). The explored soils are characterized with pH ranging from 2.81 to 7.78, with most common fluctuations of 5.5–5.6. TDS rates were often within the limit of 10 mg L-1 and rarely exceeded that threshold, however, there were single valyes higher than 50 mg L-1. Thus, the highest EC values (over 100 μS/cm) were measured in surface and subsurface horizons with high organic matter content, whereas mostly mineral horizons had typical EС values within the limit of 20 μS/cm.

Author(s):  
O. A. Lipatnikova

The study of heavy metal speciation in bottom sediments of the Vyshnevolotsky water reservoir is presented in this paper. Sequential selective procedure was used to determine the heavy metal speciation in bottom sediments and thermodynamic calculation — to determine ones in interstitial water. It has been shown that Mn are mainly presented in exchangeable and carbonate forms; for Fe, Zn, Pb и Co the forms are related to iron and manganese hydroxides is played an important role; and Cu and Ni are mainly associated with organic matter. In interstitial waters the main forms of heavy metal speciation are free ions for Zn, Ni, Co and Cd, carbonate complexes for Pb, fulvate complexes for Cu. Effects of particle size and organic matter content in sediments on distribution of mobile and potentially mobile forms of toxic elements have been revealed.


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


2017 ◽  
Vol 13 (2) ◽  
pp. 74-77
Author(s):  
Imelda J Lawalatta ◽  
Francina Matulessy ◽  
Meitty L Hehanussa

Chili (Capsicum annum L.) often experience the highest price fluctuations in Indonesia. This is caused by the production that is often disrupted in certain months, especially in the months in the rainy season due to flowers and fruits that fall before the harvest. Since agricultural land has changed its function for infrastructure development, marginal land (Ultisol) is used. The ultisol problem is: high acidity, low organic matter content, nutrient deficiency important for plants (eg N, P, Ca, Mg and Mo) and high solubility of Al, Fe and Mn. The provision of organic materials such as manure and marine mud will overcome the problem of acid-rich mineral soil and play an important role in improving, increased and maintaining sustainable land productivity. Research results for chili flower significantly. the highest number of flowers found in the treatment of L0P3, L1P2, L1P3 and L2P3 that is > 60 flower/plant. There was a single factor effect for the amount of fruit, mostly found in L3 treatment (600 ton/ha marine mud) that is 22.36 fruit/plant. The treatment of manure significantly influenced the formation of the most fruit set in the treatment of P0 and P2 (without manure and manure 20 ton/ha) that is 77.60% and 70.,45%. Keywords: Ultisol, Marine mud, Manure, Flowers and Fruit sets   ABSTRAK Tanaman cabai besar (Capsicum annum L.) sering mengalami fluktuasi harga paling tinggi di Indonesia. Hal tersebut disebabkan oleh produksi yang sering terganggu pada bulan tertentu terutama pada bulan-bulan di musim penghujan dikarenakan bunga dan buah yang rontok sebelum panen. Karena lahan pertanian banyak beralih fungsinya untuk pembangunan infrastuktur, maka digunakan lahan marginal (Ultisol). Masalah ultisol ialah: kemasaman tinggi, kadar bahan organik yang rendah, kekurangan unsur hara penting bagi tanaman (contoh: N, P, Ca, Mg dan Mo) serta tingginya kelarutan Al, Fe dan Mn. Pemberian bahan organik seperti pupuk kandang dan Lumpur laut akan mengatasi persoalan tanah mineral masam berkadar Al tinggi dan berperan penting dalam memperbaiki, meningkatkan serta mempertahankan produktifitas lahan secara berkelanjutan Hasil Penelitian untuk jumlah bunga cabai berpengaruh signifikan. jumlah bunga terbanyak terdapat pada perlakuan L0P3, L1P2, L1P3 dan L2P3 yaitu > 60 bunga/tanaman. Terjadi pengaruh faktor tunggal untuk jumlah buah, terbanyak terdapat pada perlakuan L3 ( 600 ton/ha lumpur laut) yaitu 22,36 buah/tanaman. Perlakuan pupuk kandang berpengaruh signifikan Pembentukan fruit set terbanyak pada perlakuan P0 dan P2 (tanpa pupuk kandang dan pupuk kandang 20 ton/ha) yaitu 77,60% dan 70,45%. Kata kunci: Ultisol, Lumpur Laut, Pupuk Kandang, Bunga dan Fruit set


2020 ◽  
Vol 117 (3) ◽  
pp. 351-365
Author(s):  
J. Pijlman ◽  
G. Holshof ◽  
W. van den Berg ◽  
G. H. Ros ◽  
J. W. Erisman ◽  
...  

Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 696
Author(s):  
Sanku Dattamudi ◽  
Saoli Chanda ◽  
Leonard J. Scinto

Northeast Shark River Slough (NESS), lying at the northeastern perimeter of Everglades National Park (ENP), Florida, USA, has been subjected to years of hydrologic modifications. Construction of the Tamiami Trail (US 41) in 1928 connected the east and west coasts of SE Florida and essentially created a hydrological barrier to southern sheet flow into ENP. Recently, a series of bridges were constructed to elevate a portion of Tamiami Trail, allow more water to flow under the bridges, and attempt to restore the ecological balance in the NESS and ENP. This project was conducted to determine aspects of soil physiochemistry and microbial dynamics in the NESS. We evaluated microbial respiration and enzyme assays as indicators of nutrient dynamics in NESS soils. Soil cores were collected from sites at certain distances from the inflow (near canal, NC (0–150 m); midway, M (150–600 m); and far from canal, FC (600–1200 m)). Soil slurries were incubated and assayed for CO2 emission and β-glucoside (MUFC) or phosphatase (MUFP) activity in concert with physicochemical analysis. Significantly higher TP contents at NC (2.45 times) and M (1.52 times) sites than FC sites indicated an uneven P distribution downstream from the source canal. The highest soil organic matter content (84%) contents were observed at M sites, which was due to higher vegetation biomass observed at those sites. Consequently, CO2 efflux was greater at M sites (average 2.72 µmoles g dw−1 h−1) than the other two sites. We also found that amendments of glucose increased CO2 efflux from all soils, whereas the addition of phosphorus did not. The results indicate that microbial respiration downstream of inflows in the NESS is not limited by P, but more so by the availability of labile C.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1838
Author(s):  
Evgeny Yakovlev ◽  
Igor Tokarev ◽  
Sergey Zykov ◽  
Stanislav Iglovsky ◽  
Nikolay Ivanchenko

The isotopic (234U/238U, 2H, 18O) and chemical composition of groundwater on the right bank of the Volga River along the middle reach (European Russia) was studied down to a depth of 400 m. These data allow diagnosis of the presence of a three-component mixture. The first component is modern/young fresh recharge water of the Holocene age. It has the isotopic composition of water δ18O → −12.9 ‰ and δ2H → −90 ‰, close to modern precipitations, and the equilibrium isotopic composition of uranium 234U/238U → 1 (by activity). The second component is slightly salted water of the late or postglacial period with δ18O → −17.0 ‰ and δ2H → −119 ‰, and a small excess of uranium-234 234U/238U ≈ 4. The third component is meltwater formed as result of permafrost thawing. It is brackish water with δ18O ≈ −15.0 ‰ and δ2H ≈ −110 ‰, and a maximum excess of uranium-234 234U/238U ≈ 15.7. The salinity of this water is associated with an increase of the SO42−, Ca2+ and Na+ content, and this may be due to the presence of gypsum in water-bearing sediments, because the solubility of sulfates increases at near-zero temperature. We explain the huge excess of uranium-234 by its accumulation in the mineral lattice during the glacial age and quick leaching after thawing of permafrost.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1297
Author(s):  
Laura Victoria Perdomo-Trujillo ◽  
Jose Ernesto Mancera-Pineda ◽  
Jairo Humberto Medina-Calderón ◽  
David Alejandro Sánchez-Núñez ◽  
Marie-Luise Schnetter

Mangroves provide multiple ecosystem services and are essential for mitigating global warming owing to their capacity to store large carbon (C) stocks. Due to widespread mangrove degradation, actions have been implemented to restore them worldwide. An important representative case in Colombia is the Ciénaga Grande de Santa Marta’s restoration plan. This management intervention focused on restoring the natural hydrological functioning after massive mangrove mortality (~25,000 ha) due to soil hyper-salinization after river water input from the Magdalena River was eliminated. A partial recovery occurred during subsequent years, and hydrological management is still being implemented today. To understand how the degradation and subsequent management have affected mangrove C stocks, we compared C stocks in stands with different intervention levels reflected in their current forest structure. We found that the total C stock (398–1160 Mg C ha−1) was within the range measured in other neotropical mangroves without vegetation deterioration. The aboveground C was significantly higher in the stands where hydraulic connectivity was restored. By contrast, the belowground C was higher in the stands with low hydraulic connectivity due to channel clogging and a lack of sufficient maintenance. Our results show that hydrological management measures influenced above- and belowground C stocks, even at a 2 m depth. In addition, a strong indirect relationship useful for estimating carbon content from organic matter content was found.


Author(s):  
Daniela Ciccarelli ◽  
Cleusa Bona

AbstractCoastal dunes are characterised by strong interactions between biotic and abiotic factors along a short gradient from the shoreline to the inland region. We carried out an ecological analysis of the vegetation in a protected area of the Italian coast to evaluate the relationships among species abundance, the occurrence of morphoanatomical traits related to leaves, stems, and roots, and soil variables. Three transects were established perpendicular to the shoreline, with 27 plots distributed in the frontal dunes, backdunes, and temporarily wet dune slacks. An analysis based on community-weighted mean values showed that the pioneer communities of the frontal dunes were dominated by ruderals that are well adapted to the harsh ecological conditions of these environments, showing succulent leaves, high limb thickness values, and low values for leaf dry matter content (LDMC). The backdune vegetation was a mosaic of annual herbaceous and perennial shrub communities showing both ruderal and stress-tolerant strategies (clonality, sclerified leaves, high LDMC values, root phenolics) consistent with less extreme ecological conditions. The dune slack areas were dominated by plants showing adaptations to both arid and flooded environments, such as C4 photosynthesis, amphistomatic leaves, and abundant aerenchyma in the roots. The invasive status, C4 photosynthesis, leaf trichomes, and aerenchyma in the roots were significantly correlated with soil humidity, organic matter content, and pH. These results demonstrate the usefulness of anatomical traits (including root system traits) in understanding the functional strategies adopted by plants. Invasive species tended to occupy plots with high levels of soil moisture, suggesting an avoidance strategy for the harsh environmental conditions of coastal sand dunes. Finally, we suggest including information regarding root systems into coastal monitoring programs because they are directly linked to soil parameters useful in coastal dune management and protection.


Sign in / Sign up

Export Citation Format

Share Document