Implementing an open source spatio-temporal search platform for Spatial Data Infrastructures
A Spatial Data Infrastructure (SDI) is a framework of geospatial data, metadata, users and tools intended to provide the most efficient and flexible way to use spatial information. One of the key software components of a SDI is the catalogue service, needed to discover, query and manage the metadata. Catalogue services in a SDI are typically based on the Open Geospatial Consortium (OGC) Catalogue Service for the Web (CSW) standard, that defines common interfaces to access the metadata information. A search engine is a software system able to perform very fast and reliable search, with features such as full text search, natural language processing, weighted results, fuzzy tolerance results, faceting, hit highlighting and many others. The Centre of Geographic Analysis (CGA) at Harvard University is trying to integrate within its public domain SDI (named WorldMap), the benefits of both worlds (OGC catalogues and search engines). Harvard Hypermap (HHypermap) is a component that will be part of WorldMap, totally built on an open source stack, implementing an OGC catalogue, based on pycsw, to provide access to metadata in a standard way, and a search engine, based on Solr/Lucene, to provide the advanced search features typically found in search engines.