scholarly journals Single exponential decay waveform; a synergistic combination of electroporation and electrolysis (E2) for tissue ablation

Author(s):  
Nina Klein ◽  
Enric Guenther ◽  
Paul Mikus ◽  
Michael K Stehling ◽  
Boris Rubinsky

Background: Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2). Method: A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW), was applied to the pig liver and the effect of various parameters on the extent of tissue ablation was examined with histology. Results: Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue Discussion: The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs) and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3190 ◽  
Author(s):  
Nina Klein ◽  
Enric Guenther ◽  
Paul Mikus ◽  
Michael K. Stehling ◽  
Boris Rubinsky

Background Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study, we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2). Method A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW) was applied to the pig liver, and the effect of various parameters on the extent of tissue ablation was examined with histology. Results Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue. Discussion The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs) and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.


2016 ◽  
Author(s):  
Nina Klein ◽  
Enric Guenther ◽  
Paul Mikus ◽  
Michael K Stehling ◽  
Boris Rubinsky

Background: Electrolytic ablation and electroporation based ablation are minimally invasive, non-thermal surgical technologies that employ electrical currents and electric fields to ablate undesirable cells in a volume of tissue. In this study we explore the attributes of a new tissue ablation technology that simultaneously delivers a synergistic combination of electroporation and electrolysis (E2). Method: A new device that delivers a controlled dose of electroporation field and electrolysis currents in the form of a single exponential decay waveform (EDW), was applied to the pig liver and the effect of various parameters on the extent of tissue ablation was examined with histology. Results: Histological analysis shows that E2 delivered as EDW can produce tissue ablation in volumes of clinical significance, using electrical and temporal parameters which, if used in electroporation or electrolysis separately, cannot ablate the tissue Discussion: The E2 combination has advantages over the three basic technologies of non-thermal ablation: electrolytic ablation, electrochemical ablation (reversible electroporation with injection of drugs) and irreversible electroporation. E2 ablates clinically relevant volumes of tissue in a shorter period of time than electrolysis and electroporation, without the need to inject drugs as in reversible electroporation or use paralyzing anesthesia as in irreversible electroporation.


2020 ◽  
Vol 19 ◽  
pp. 153303382094805
Author(s):  
Hong Bae Kim ◽  
Jong Hoon Chung

Tissue electrolysis is an alternative modality that uses a low intensity direct electric current passing through at least 2 electrodes within the tissue and resulting electrochemical products including chlorine and hydrogen. These products induce changes in pH around electrodes and cause dehydration resulting from electroosmotic pressure, leading to changes in microenvironment and thus metabolism of the tissues, yielding apoptosis. The procedure requires adequate time for electrochemical reactions to yield products sufficient to induce apoptosis of the tissues. Incorporation of electroporation into electrolysis can decrease the treatment time and enhance the efficiency of electrolytic ablation. Electroporation causes permeabilization in the cell membrane allowing the efflux of potassium ions and extension of the electrochemical area, facilitating the electrolysis process. However, little is known about the combined effects on apoptosis in liver ablation. In this study, we performed an immunohistochemical evaluation of apoptosis for the incorporation of electroporation into electrolysis in liver tissues. To do so, the study was performed with microelectrodes for fixed treatment time while the applied voltage varied to increase the applied total energy for electrolysis. The apoptotic rate for electrolytic ablation increased with enhanced applied energy. The apoptotic rate was 4.31 ± 1.73 times that of control in the synergistic combination compared to 1.49 ± 0.33 times that of the control in electrolytic ablation alone. Additionally, tissue structure was better preserved in synergistic combination ablation compared to electrolysis with an increment of 3.8 mA. Thus, synergistic ablation may accelerate apoptosis and be a promising modality for the treatment of liver tumors.


2016 ◽  
Vol 21 (4) ◽  
pp. 247 ◽  
Author(s):  
Boris Rubinsky ◽  
Enric Gunther ◽  
Florin Botea ◽  
Franco Lugnani ◽  
Vlad Herlea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document