Evaluating Retinal Function in the Mouse Retina with the Electroretinogram

2005 ◽  
Vol 289 (4) ◽  
pp. C1015-C1023 ◽  
Author(s):  
Monica L. Acosta ◽  
Michael Kalloniatis ◽  
David L. Christie

Creatine and phosphocreatine are required to maintain ATP needed for normal retinal function and development. The aim of the present study was to determine the distribution of the creatine transporter (CRT) to gain insight to how creatine is transported into the retina. An affinity-purified antibody raised against the CRT was applied to adult vertebrate retinas and to mouse retina during development. Confocal microscopy was used to identify the localization pattern as well as co-localization patterns with a range of retinal neurochemical markers. Strong labeling of the CRT was seen in the photoreceptor inner segments in all species studied and labeling of a variety of inner neuronal cells (amacrine, bipolar, and ganglion cells), the retinal nerve fibers and sites of creatine transport into the retina (retinal pigment epithelium, inner retinal blood vessels, and perivascular astrocytes). The CRT was not expressed in Müller cells of any of the species studied. The lack of labeling of Müller cells suggests that neurons are independent of this glial cell in accumulating creatine. During mouse retinal development, expression of the CRT progressively increased throughout the retina until approximately postnatal day 10, with a subsequent decrease. Comparison of the distribution patterns of the CRT in vascular and avascular vertebrate retinas and studies of the mouse retina during development indicate that creatine and phosphocreatine are important for ATP homeostasis.


Metallomics ◽  
2016 ◽  
Vol 8 (10) ◽  
pp. 1110-1121 ◽  
Author(s):  
Alexandra Grubman ◽  
Philipp Guennel ◽  
Kirstan A. Vessey ◽  
Michael W. M. Jones ◽  
Simon A. James ◽  
...  

The biologically important metals such as zinc, copper and iron play key roles in retinal function, yet no study has mapped the spatio-temporal distribution of retinal biometals in healthy or diseased retina.


2020 ◽  
Vol 8 (1) ◽  
pp. e001519 ◽  
Author(s):  
Wei Wang ◽  
Ka Cheung Tam ◽  
Tsz Chung Ng ◽  
Rajesh Kumar Goit ◽  
Kate Lok San Chan ◽  
...  

IntroductionLutein is a carotenoid whose protective effects in the retina have been reported in various studies. The effect of lutein has not been reported in the retina of the Ins2Akita/+ mouse, a well-characterized genetic model for diabetic retinopathy (DR) in which the etiology of diabetes is better defined than the chemically induced diabetes. The objective of the present study is to investigate the effect of long-term administration of lutein in early stages of DR using the Ins2Akita/+ mouse.Research design and methodsHeterozygous male Ins2Akita/+ and age-matched wild-type mice were used. Lutein was administered to the mice in drinking water starting 6 weeks old daily until analysis at 4.5, 6.5 or 9 months of age. Plain water served as non-treatment control. Microglia were immunostained with ionized calcium-binding adapter molecule 1 (Iba-1) and cluster of differentiation 68 (CD68) in retinal flat-mounts. Vascular endothelial growth factor (VEGF) level in the retina was assessed by enzyme-linked immunosorbent assay (ELISA). Vascular permeability was analyzed in retinal flat-mounts after fluorescein isothiocyanate (FITC)-dextran perfusion. Retinal occludin expression was assessed via Western blots. Retinal function was examined by electroretinography (ERG).ResultsIncreased microglial reactivity was detected in the Ins2Akita/+ mouse retina and was suppressed by lutein. Lutein administration also reduced the upregulation of VEGF in the Ins2Akita/+ mouse retina. Increased vascular leakage and decreased occludin expression were observed in the Ins2Akita/+ mouse retina, and these alterations were attenuated by lutein treatment. ERG recordings showed reduced a-wave and b-wave amplitudes in the Ins2Akita/+ mice. With lutein treatment, the ERG deficits were significantly alleviated.ConclusionsWe showed beneficial effects of long-term lutein administration in the Ins2Akita/+ mouse retina, including suppression of retinal inflammation, protection of retinal vasculature and preservation of retinal function. These results point to lutein’s potential as a long-term therapeutic intervention for prevention of inflammation and retinal degeneration in patients with early DR.


Sign in / Sign up

Export Citation Format

Share Document