scholarly journals Decision letter: The relationship between spatial configuration and functional connectivity of brain regions revisited

2019 ◽  
Author(s):  
Daniel S Margulies ◽  
Jakob Seidlitz
2017 ◽  
Author(s):  
Janine D. Bijsterbosch ◽  
Mark W. Woolrich ◽  
Matthew F. Glasser ◽  
Emma C. Robinson ◽  
Christian F. Beckmann ◽  
...  

AbstractBrain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behavior. For example, studies have used "functional connectivity fingerprints" to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits.


Author(s):  
Janine Diane Bijsterbosch ◽  
Mark W Woolrich ◽  
Matthew F Glasser ◽  
Emma C Robinson ◽  
Christian F Beckmann ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Janine Diane Bijsterbosch ◽  
Mark W Woolrich ◽  
Matthew F Glasser ◽  
Emma C Robinson ◽  
Christian F Beckmann ◽  
...  

Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used ‘functional connectivity fingerprints’ to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits.


2019 ◽  
Author(s):  
Janine D. Bijsterbosch ◽  
Christian F. Beckmann ◽  
Mark W. Woolrich ◽  
Stephen M. Smith ◽  
Samuel J. Harrison

AbstractIn our previous paper (Bijsterbosch et al., 2018), we showed that network-based modelling of brain connectivity interacts strongly with the shape and exact location of brain regions, such that cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Here we show that these spatial effects on connectivity estimates actually occur as a result of spatial overlap between brain networks. This is shown to systematically bias connectivity estimates obtained from group spatial ICA followed by dual regression. We introduce an extended method that addresses the bias and achieves more accurate connectivity estimates.Impact statementWe show that functional connectivity network matrices as estimated from resting state functional MRI are biased by spatially overlapping network structure.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Janine Diane Bijsterbosch ◽  
Christian F Beckmann ◽  
Mark W Woolrich ◽  
Stephen M Smith ◽  
Samuel J Harrison

Previously we showed that network-based modelling of brain connectivity interacts strongly with the shape and exact location of brain regions, such that cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity (Bijsterbosch et al., 2018). Here we show that these spatial effects on connectivity estimates actually occur as a result of spatial overlap between brain networks. This is shown to systematically bias connectivity estimates obtained from group spatial ICA followed by dual regression. We introduce an extended method that addresses the bias and achieves more accurate connectivity estimates.


2019 ◽  
Author(s):  
Janine Diane Bijsterbosch ◽  
Christian F Beckmann ◽  
Mark W Woolrich ◽  
Stephen M Smith ◽  
Samuel J Harrison

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zijin Gu ◽  
Keith Wakefield Jamison ◽  
Mert Rory Sabuncu ◽  
Amy Kuceyeski

AbstractWhite matter structural connections are likely to support flow of functional activation or functional connectivity. While the relationship between structural and functional connectivity profiles, here called SC-FC coupling, has been studied on a whole-brain, global level, few studies have investigated this relationship at a regional scale. Here we quantify regional SC-FC coupling in healthy young adults using diffusion-weighted MRI and resting-state functional MRI data from the Human Connectome Project and study how SC-FC coupling may be heritable and varies between individuals. We show that regional SC-FC coupling strength varies widely across brain regions, but was strongest in highly structurally connected visual and subcortical areas. We also show interindividual regional differences based on age, sex and composite cognitive scores, and that SC-FC coupling was highly heritable within certain networks. These results suggest regional structure-function coupling is an idiosyncratic feature of brain organisation that may be influenced by genetic factors.


NeuroImage ◽  
2019 ◽  
Vol 196 ◽  
pp. 318-328 ◽  
Author(s):  
Feliberto de la Cruz ◽  
Andy Schumann ◽  
Stefanie Köhler ◽  
Jürgen R. Reichenbach ◽  
Gerd Wagner ◽  
...  

2018 ◽  
Author(s):  
Alican Nalci ◽  
Bhaskar D. Rao ◽  
Thomas T. Liu

AbstractIn resting-state fMRI, dynamic functional connectivity (DFC) measures are used to characterize temporal changes in the brain’s intrinsic functional connectivity. A widely used approach for DFC estimation is the computation of the sliding window correlation between blood oxygenation level dependent (BOLD) signals from different brain regions. Although the source of temporal fluctuations in DFC estimates remains largely unknown, there is growing evidence that they may reflect dynamic shifts between functional brain networks. At the same time, recent findings suggest that DFC estimates might be prone to the influence of nuisance factors such as the physiological modulation of the BOLD signal. Therefore, nuisance regression is used in many DFC studies to regress out the effects of nuisance terms prior to the computation of DFC estimates. In this work we examined the relationship between DFC estimates and nuisance factors. We found that DFC estimates were significantly correlated with temporal fluctuations in the magnitude (norm) of various nuisance regressors, with significant correlations observed in the majority (76%) of the cases examined. Significant correlations between the DFC estimates and nuisance regressor norms were found even when the underlying correlations between the nuisance and fMRI time courses were relatively small. We then show that nuisance regression does not eliminate the relationship between DFC estimates and nuisance norms, with significant correlations observed in the majority (71%) of the cases examined after nuisance regression. We present theoretical bounds on the difference between DFC estimates obtained before and after nuisance regression and relate these bounds to limitations in the efficacy of nuisance regression with regards to DFC estimates.


Sign in / Sign up

Export Citation Format

Share Document