AbstractIn the context of flexible and adaptive animal behavior, the orbitofrontal cortex (OFC) is found to be one of the crucial regions in the prefrontal cortex (PFC) influencing the downstream processes of decision-making and learning in the sub-cortical regions. Although OFC has been implicated to be important in a variety of related behavioral processes, the exact mechanisms are unclear, through which the OFC encodes or processes information related to decision-making and learning. Here, we propose a systems-level view of the OFC, positioning it at the nexus of sub-cortical systems and other prefrontal regions. Particularly we focus on one of the most recent implications of neuroscientific evidences regarding the OFC - possible functional dissociation between two of its sub-regions : lateral and medial. We present a system-level computational model of decision-making and learning involving the two sub-regions taking into account their individual roles as commonly implicated in neuroscientific studies. We emphasize on the role of the interactions between the sub-regions within the OFC as well as the role of other sub-cortical structures which form a network with them. We leverage well-known computational architecture of thalamo-cortical basal ganglia loops, accounting for recent experimental findings on monkeys with lateral and medial OFC lesions, performing a 3-arm bandit task. First we replicate the seemingly dissociate effects of lesions to lateral and medial OFC during decision-making as a function of value-difference of the presented options. Further we demonstrate and argue that such an effect is not necessarily due to the dissociate roles of both the subregions, but rather a result of complex temporal dynamics between the interacting networks in which they are involved.Author summaryWe first highlight the role of the Orbitofrontal Cortex (OFC) in value-based decision making and goal-directed behavior in primates. We establish the position of OFC at the intersection of cortical mechanisms and thalamo-basal ganglial circuits. In order to understand possible mechanisms through which the OFC exerts emotional control over behavior, among several other possibilities, we consider the case of dissociate roles of two of its topographical subregions - lateral and medial parts of OFC. We gather predominant roles of each of these sub-regions as suggested by numerous experimental evidences in the form of a system-level computational model that is based on existing neuronal architectures. We argue that besides possible dissociation, there could be possible interaction of these sub-regions within themselves and through other sub-cortical structures, in distinct mechanisms of choice and learning. The computational framework described accounts for experimental data and can be extended to more comprehensive detail of representations required to understand the processes of decision-making, learning and the role of OFC and subsequently the regions of prefrontal cortex in general.