Less Reflective Sub-Wavelength Structure Formed on Textured Surface Using Nanosphere Mask

2013 ◽  
Vol 52 (1S) ◽  
pp. 01AD03
Author(s):  
Chiung-Wei Lin ◽  
Cheng-Chieh Juan
2013 ◽  
Vol 15 (5) ◽  
pp. 055707 ◽  
Author(s):  
Wenji Yang ◽  
Hongchun Yu ◽  
Yanguo Wang

2006 ◽  
Vol 51 ◽  
pp. 115-120 ◽  
Author(s):  
W.L. Chiu ◽  
M.M. Alkaisi ◽  
G. Kumaravelu ◽  
R.J. Blaikie ◽  
R.J. Reeves ◽  
...  

We have employed Interferometric Lithography (IL) for sub-wavelength surface texturing on large area silicon substrates. Low defect density Reactive Ion Etching (RIE) processes have been developed to transfer the pattern into the silicon using SF 6 plasma. Reflection measurements on the sub-wavelength textured surface have been carried out and show a substantial reduction from ~30% to below 4% over the spectrum range from 400nm to 1200nm. IL is a mask-less lithography technique which is used to define periodic patterns. The theoretical limit of the pitch size of the structure is half of the wavelength of the light source. Hence, the sub-wavelength patterns can be achieved easily. Moreover, sub-wavelength texturing requires short RIE processes; most of the plasma-induced damage on the silicon surface can be avoided.


1973 ◽  
Vol 1 (4) ◽  
pp. 354-362 ◽  
Author(s):  
F. R. Martin ◽  
P. H. Biddison

Abstract Treads made with emulsion styrene-butadiene copolymer (SBR), solution SBR, polybutadiene (BR), and a 60/40 emulsion SBR/BR mixture were built as four-way tread sections on G78-15 belted bias tires, which were driven over both concrete and gravel-textured highways and on a small, circular, concrete test track. The tires were front mounted. When driven on concrete highway, all except the BR tread had either crumbled- or liquid-appearing surfaces, thought to have been formed by mechanical degradation or fatigue. When cornered on concrete, these materials formed small cylindrical particles or rolls. The BR tread had a smooth, granular-textured surface when driven on concrete highway and a ridge or sawtooth abrasion pattern when cornered on concrete. All the materials appeared rough and torn when run on gravel-textured highway. The differences in wear surface formed on BR tread and the other three are thought to be due primarily to the relatively high resilience of BR.


PIERS Online ◽  
2005 ◽  
Vol 1 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Pavel A. Belov ◽  
C. R. Simovski

Nanophotonics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 897-903 ◽  
Author(s):  
Oleksandr Buchnev ◽  
Alexandr Belosludtsev ◽  
Victor Reshetnyak ◽  
Dean R. Evans ◽  
Vassili A. Fedotov

AbstractWe demonstrate experimentally that Tamm plasmons in the near infrared can be supported by a dielectric mirror interfaced with a metasurface, a discontinuous thin metal film periodically patterned on the sub-wavelength scale. More crucially, not only do Tamm plasmons survive the nanopatterning of the metal film but they also become sensitive to external perturbations as a result. In particular, by depositing a nematic liquid crystal on the outer side of the metasurface, we were able to red shift the spectral position of Tamm plasmon by 35 nm, while electrical switching of the liquid crystal enabled us to tune the wavelength of this notoriously inert excitation within a 10-nm range.


2021 ◽  
Vol 197 ◽  
pp. 106308
Author(s):  
Yijie Liu ◽  
Liang Jin ◽  
Hongfa Wang ◽  
Dongying Liu ◽  
Yingjing Liang

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
M. Saad Bin-Alam ◽  
Orad Reshef ◽  
Yaryna Mamchur ◽  
M. Zahirul Alam ◽  
Graham Carlow ◽  
...  

AbstractPlasmonic nanostructures hold promise for the realization of ultra-thin sub-wavelength devices, reducing power operating thresholds and enabling nonlinear optical functionality in metasurfaces. However, this promise is substantially undercut by absorption introduced by resistive losses, causing the metasurface community to turn away from plasmonics in favour of alternative material platforms (e.g., dielectrics) that provide weaker field enhancement, but more tolerable losses. Here, we report a plasmonic metasurface with a quality-factor (Q-factor) of 2340 in the telecommunication C band by exploiting surface lattice resonances (SLRs), exceeding the record by an order of magnitude. Additionally, we show that SLRs retain many of the same benefits as localized plasmonic resonances, such as field enhancement and strong confinement of light along the metal surface. Our results demonstrate that SLRs provide an exciting and unexplored method to tailor incident light fields, and could pave the way to flexible wavelength-scale devices for any optical resonating application.


Sign in / Sign up

Export Citation Format

Share Document