scholarly journals Sex-dependent Depot Differences in Adipose Tissue Development and Function; Role of Sex Steroids

2017 ◽  
Vol 26 (3) ◽  
pp. 172-180 ◽  
Author(s):  
Mi-Jeong Lee ◽  
Susan K. Fried
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Tiziana Squillaro ◽  
Gianfranco Peluso ◽  
Umberto Galderisi ◽  
Giovanni Di Bernardo

Complex interaction between genetics, epigenetics, environment, and nutrition affect the physiological activities of adipose tissues and their dysfunctions, which lead to several metabolic diseases including obesity or type 2 diabetes. Here, adipogenesis appears to be a process characterized by an intricate network that involves many transcription factors and long noncoding RNAs (lncRNAs) that regulate gene expression. LncRNAs are being investigated to determine their contribution to adipose tissue development and function. LncRNAs possess multiple cellular functions, and they regulate chromatin remodeling, along with transcriptional and post-transcriptional events; in this way, they affect gene expression. New investigations have demonstrated the pivotal role of these molecules in modulating white and brown/beige adipogenic tissue development and activity. This review aims to provide an update on the role of lncRNAs in adipogenesis and adipose tissue function to promote identification of new drug targets for treating obesity and related metabolic diseases.


2012 ◽  
Vol 108 (11) ◽  
pp. 1915-1923 ◽  
Author(s):  
Cherlyn Ding ◽  
Dan Gao ◽  
John Wilding ◽  
Paul Trayhurn ◽  
Chen Bing

Vitamin D deficiency and the rapid increase in the prevalence of obesity are both considered important public health issues. The classical role of vitamin D is in Ca homoeostasis and bone metabolism. Growing evidence suggests that the vitamin D system has a range of physiological functions, with vitamin D deficiency contributing to the pathogenesis of several major diseases, including obesity and the metabolic syndrome. Clinical studies have shown that obese individuals tend to have a low vitamin D status, which may link to the dysregulation of white adipose tissue. Recent studies suggest that adipose tissue may be a direct target of vitamin D. The expression of both the vitamin D receptor and 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) genes has been shown in murine and human adipocytes. There is evidence that vitamin D affects body fat mass by inhibiting adipogenic transcription factors and lipid accumulation during adipocyte differentiation. Some recent studies demonstrate that vitamin D metabolites also influence adipokine production and the inflammatory response in adipose tissue. Therefore, vitamin D deficiency may compromise the normal metabolic functioning of adipose tissue. Given the importance of the tissue in energy balance, lipid metabolism and inflammation in obesity, understanding the mechanisms of vitamin D action in adipocytes may have a significant impact on the maintenance of metabolic health. In the present review, we focus on the signalling role of vitamin D in adipocytes, particularly the potential mechanisms through which vitamin D may influence adipose tissue development and function.


2003 ◽  
Vol 89 (04) ◽  
pp. 696-704 ◽  
Author(s):  
Erik Maquoi ◽  
Diego Demeulemeester ◽  
Gabor Vörös ◽  
Désire Collen ◽  
H. Lijnen

SummaryTo investigate a potential role of stromelysin-1 (MMP-3) in development of adipose tissue, 5 week old male MMP-3 deficient mice (MMP-3-/-) and wild-type (MMP-3+/+) controls were kept on a high fat diet (HFD) for 15 weeks. MMP-3-/- mice were hyperphagic and gained more weight than the MMP-3+/+ mice. At the time of sacrifice, the body weight of the MMP-3-/- mice was significantly higher than that of the MMP-3+/+ mice, as was the weight of the isolated subcutaneous (SC) and gonadal (GON) fat deposits. Significant adipocyte hypertrophy was observed in the GON but not in the SC adipose tissue of MMP-3-/- mice. Fasting plasma glucose and cholesterol levels were comparable in both genotypes, whereas triglyceride levels were significantly lower in MMP-3-/- mice. Staining with an endothelial cell specific lectin revealed a significantly higher blood vessel density and larger total stained area in the GON adipose tissues of MMP-3-/- mice. Thus, in a murine model of nutritionally induced obesity, MMP-3 impairs adipose tissue development, possibly by affecting food intake and/or adipose tissue-related angiogenesis.Theme paper: Part of this paper was originally presented at the joint meetings of the 16th International Congress of the International Society of Fibrinolysis and Proteolysis (ISFP) and the 17th International Fibrinogen Workshop of the International Fibrinogen Research Society (IFRS) held in Munich, Germany, September, 2002.


2002 ◽  
Vol 87 (02) ◽  
pp. 306-310 ◽  
Author(s):  
P.E. Morange ◽  
D. Bastelica ◽  
M.F. Bonzi ◽  
B. Van Hoef ◽  
D. Collen ◽  
...  

SummaryTo investigate the potential role of tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA) in development of adipose tissue, we have used a nutritionally induced obesity model in t-PA (t-PA−/−) and u-PA (u-PA−/−) deficient mice. Five week old male wild-type (WT), t-PA−/− or u-PA−/− mice (n = 9 to 16) were fed a high fat diet (HFD, 42% fat). After 16 weeks of HFD, the body weight of t-PA−/− mice was significantly higher than that of WT mice (48 ± 1.1 g vs. 39 ± 2.2 g, p = 0.004). The total weight of the isolated subcutaneous (sc) fat deposit was higher in t-PA−/− than in WT mice (2.4 ± 0.22 g vs. 1.2 ± 0.29 g, p = 0.002), accompanied with higher adipocyte diameters (80 ± 1.7 µm vs. 61 ± 4.7 µm, p < 0.01). These differences were not observed in the intra-abdominal fat deposit. The number of stroma cells in both adipose tissue territories was increased in t-PA−/− as compared to WT mice (2.0 ± 0.13 vs. 1.5 ± 0.10 p = 0.02 and 3.0 ± 0.17 vs 1.6 ± 0.17, p = 0.0001, stroma cells/ adipocytes in sc and intra-abdominal tissue, respectively), partly as a result of an increased number of endothelial cells (192 ± 9 vs. 154 ± 18 p = 0.06 and 108 ± 13 vs. 69 ± 8 p = 0.04 CD31 stained/adipocyte area). In contrast the weight gain and adipose tissue development in u-PA−/− mice was not different from that in WT mice. These data suggest that t-PA but not u-PA plays a role in adipose tissue development.


2005 ◽  
Vol 25 (5) ◽  
pp. 1002-1007 ◽  
Author(s):  
Erik Maquoi ◽  
Gabor Vörös ◽  
Peter Carmeliet ◽  
Désiré Collen ◽  
H. Roger Lijnen

2018 ◽  
Author(s):  
Younghoon Jang ◽  
Chaochen Wang ◽  
Aaron Broun ◽  
Young-Kwon Park ◽  
Lenan Zhuang ◽  
...  

AbstractHistone H3K4 mono-methyltransferases MLL3 and MLL4 (MLL3/4) are required for enhancer activation during cell differentiation, though the mechanism is incompletely understood. To address MLL3/4 enzymatic activity in enhancer regulation, we have generated two mouse lines: one expressing H3.3K4M, a lysine-4-to-methionine (K4M) mutation of histone H3.3 that inhibits H3K4 methylation, and the other carrying conditional double knockout of MLL3/4 enzymatic SET domains. Expression of H3.3K4M in lineage-specific precursor cells depletes H3K4 methylation and prevents adipogenesis and adipose tissue development. Mechanistically, H3.3K4M prevents enhancer activation in adipogenesis by destabilizing MLL3/4 proteins but not other Set1-like H3K4 methyltransferases. Notably, deletion of the enzymatic SET domain of MLL3/4 in lineage-specific precursor cells mimics H3.3K4M expression and prevents adipose tissue development. Interestingly, destabilization of MLL3/4 by H3.3K4M in adipocytes does not affect adipose tissue maintenance and function. Together, our findings indicate that H3.3K4M destabilizes enhancer epigenomic writers MLL3/4 and impairs adipose tissue development.


Sign in / Sign up

Export Citation Format

Share Document