scholarly journals Compact Broadband Microstrip Triangular Antennas Fed By Folded Triangular Patch for Wireless Applications

2021 ◽  
Vol 10 (3) ◽  
pp. 14-23
Author(s):  
H. Malekpoor ◽  
M. Shahraki

This study presents two new designs of reduced size broadband microstrip patch antennas for ultra-wideband (UWB) operation. A folded triangular patch’s feeding technique, V-shaped slot, half V-shaped slot and shorting pins are employed to design the suggested antennas. The shorting pins are applied at the edge of structures to miniaturize the size of the patches. The suggested design with the V-shaped slot provides the measured impedance bandwidth (S11˂-10 dB) of 3.91-12 GHz (101.7%) for broadband application. In the suggested design with the V-shaped slot, the wide bandwidth with an acceptable size reduction is achieved. By introducing a suggested half design with the half V-shaped slot, the impedance bandwidth of the proposed half structure is improved from 4 to 17.22 GHz. The half design includes a measured impedance bandwidth of 124.6% with reduced size of more than 93% compared to the corresponding full design and an enhanced measured bandwidth of 23%. The obtained radiation and impedance results show that the suggested designs are applicable for wideband operation. Besides, the effects of some basic concepts and surface currents on the suggested structures are investigated to explain their broadband performance.

2020 ◽  
Vol 35 (8) ◽  
pp. 971-974
Author(s):  
Tanzeela Mitha ◽  
Maria Pour

A wideband microstrip patch antenna, exciting the fundamental transverse electric (TE) mode, is investigated. The excitation of the TE mode is facilitated through replacing both of the patch and ground plane of a conventional microstrip antenna with artificial magnetic conductors (AMC), consisting of unipolar compact photonic bandgap (UC-PBG) unit cells. The AMC patch and the ground plane of this antenna behave as magnetic conductors within the bandgap region of the unit cells. Similar to conventional patch antennas, it is shown that by cutting a U-shaped slot in the AMC patch, wideband characteristics are realized. The antenna shows a 40% impedance bandwidth and operates at the TE10 mode. Moreover, the width of the patch is 1.75 times smaller than its length, reducing the overall size of the antenna by about 60%, compared with the conventional U-slot PEC antenna supporting the transverse magnetic (TM) mode.


2016 ◽  
Vol 9 (3) ◽  
pp. 629-638 ◽  
Author(s):  
Jaishanker Prasad Keshari ◽  
Binod Kumar Kanaujia ◽  
Mukesh Kumar Khandelwal ◽  
Pritam Singh Bakariya ◽  
Ram Mohan Mehra

In this paper, triple-band stacked microstrip patch antennas (MPAs) are presented with wide impedance bandwidth and suppressed cross-polarization level. Triangular and circular shaped slots are embedded in the patch of antenna. Slot-loaded microstrip patches are fed with meandered microstrip line supported by a semi-ground plane structure. Triangular shaped slot-loaded MPA shows triple resonance at frequencies 2.2, 4.45, and 5.3 GHz having bandwidth of 45.9, 19.23, and 15.67%, respectively. Circular shaped slot-loaded MPA also shows triple resonance at frequencies 2.2, 4.42, and 5.38 GHz having bandwidth of 50.24, 33.21, and 13.43%, respectively. Using circular slot in place of triangular; bandwidth of the first and the second band is improved by 4.34 and 13.98%, respectively. Both the proposed antennas show an omnidirectional radiation pattern at all three resonance frequencies in the xz-plane with almost 0 dBi gain. Both the proposed antennas are fabricated on a FR-4 epoxy substrate and show a minimum level of cross-polarization radiations.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Weiwei Xu ◽  
Junhong Wang ◽  
Meie Chen ◽  
Zhan Zhang ◽  
Zheng Li

This paper presents a method for implementing a low in-band scattering design for microstrip patch antennas based on the analysis of structural mode scattering and radiation characteristics. The antenna structure is first designed to have the lowest structural mode scattering in a desired frequency band. The operating frequency band of the antenna is then changed to coincide with that of the lowest structural mode scattering by adjusting the feed position on the antenna (offset feeding) to achieve an antenna with low in-band radar cross section (RCS). In order to reduce the level of cross polarization of the antenna caused by offset feeding, symmetry feeding structures for both single patch antennas and two-patch arrays are proposed. Examples that show the efficiency of the method are given, and the results illustrate that the in-band RCS of the proposed antennas can be reduced by as much as 17 dBsm for plane waves impinging from the normal direction compared to patch antennas fed by conventional methods.


A heterogeneous substrate multiband microstrip patch antenna with various shapes fed by a rectangular microstrip feed line is proposed in this paper with a total area of 73.3 x 127.85 x 3.2 mm3 . The antennas are printed on a heterogeneous substrate with the combinations of easily available materials like FR4_epoxy, Air and Taconic RF-30 with relative permittivity of 4.4, 1 and 3.The multiband characteristics are achieved by choosing a proper selection of positions and dimensions of slot in the substrate below the patch. The various structures of microstrip patch antennas like rectangular, square, circular, elliptical and triangular covers L (1-2 GHz), S (2-4 GHz), C (4-8 GHz) and X (8-12 GHz) bands and used for various applications like Low Density Radio Communications Link (LDRCL), Communication satellites, Wireless LAN-802.11b, 802.11g, Bluetooth and WiMAX applications. All the antennas are designed and imitated using Ansoft HFSS 13.0 antenna software. The prototype of various shapes of proposed antennas are fabricated and measured and results in good return Loss, VSWR, resonant frequency, radiation pattern and the antenna gain.


2019 ◽  
Vol 8 (4) ◽  
pp. 5078-5082

While the revolution in antenna engineering leads to the fast-growing communication systems, Microstrip Patch Antennas (MPA) have proven to be the most unconventional discovery in the epoch of miniaturization. This paper incorporates the designing, simulation, and analysis of rectangular & circular microstrip patch antennas. The resonating frequency of the proposed patch antennas is 9 GHz, lying in the X band region and are designed on Rogers RT/duroid 5880 material having dielectric constant 2.2, using Ansys HFSS software. The proposed MPAs were compared on the basis of five performance parameters (Return loss, Bandwidth, VSWR, Gain and HPBW). It was observed that rectangular MPA has a higher value of return loss, VSWR and HPBW than circular MPA. Whereas, circular MPA has greater bandwidth and gain than rectangular MPA. The proposed antennas can be used in radar, wireless and satellite applications.


Sign in / Sign up

Export Citation Format

Share Document