scholarly journals Strain and Curvature Stability Enhanced SMF Introduction

2017 ◽  
Vol 6 (1) ◽  
pp. 63
Author(s):  
S. Makouei

In this paper, the strain insensitive single mode optical fiber with low nonlinear effects and ultra low bending loss (BL), appropriate for small curvature radius installation, is presented. The suggested design method is based on the reverse engineering which evaluates the refractive index profile considering proper mode field diameter (MFD) value. Then, so as to attain the desired bending loss and strain response for the optical fiber, the optimization tool of the evolutionary genetic algorithm (GA) is employed to determine the optical and geometrical parameters of the structure. In the first designed fiber, the calculations for BL, MFD, effective area (Aeff), and effective refractive index (neff) sensitivity to strain in the well-known wavelength of 1.55 µm are 0.0018 dB per each turn of 5 mm curvature radius, 8.53 µm, 58 µm2, and 4.5 × 10-8 µɛ-1, respectively. Furthermore, the effect of placing raised outer cladding in the fiber structure is investigated which exhibits the MFD of 8.63 µm, 0.0093 dB BL for single turn of 5 mm radius, and 87 µm2 Aeff at 1.55 µm. In this case the strain sensitivity of 6.7 × 10-8 µɛ-1 is calculated for the neff. The mentioned effective area is magnificently large in the domain of bend insensitive fibers. In the meantime, the designed structures are insensitive to strain which is a crucial feature in applications with small curvature radius.

2016 ◽  
Vol 5 (1) ◽  
pp. 53 ◽  
Author(s):  
S. Makouei ◽  
F. Makouei

In this article, the effect of strain on mode field diameter (MFD) and effective area (Aeff) in a modern multilayer WII type single mode optical fiber is investigated. The modal analysis of the fiber structure is based on linear polarized (LP) approximation method. The simulation results depict that both mode field diameter and effective area grow as a result of increment in tensile strain. The overall effect is observed in a slight rise in quality factor (Qf) of the fiber. Likewise, enlargement in amplitude of compressive strain leads to decrement in MFD and Aeff. However, among the optical and geometrical parameters of the fiber structure, Δ has the most considerable impact on both MFD and Aeff variation whilst R1 shows the least effect. In other words, any shift in the value allocated to Δ results in substantial change in the MFD and Aeff alteration due to strain. To eliminate this effect, the higher amounts for Δ are preferable which is related to the layering structure of the WII type optical fiber.


2016 ◽  
Vol 14 (5) ◽  
pp. 050604-50608
Author(s):  
Zaihang Yang Zaihang Yang ◽  
Hao Sun Hao Sun ◽  
Tingting Gang Tingting Gang ◽  
Nan Liu Nan Liu ◽  
Jiacheng Li Jiacheng Li ◽  
...  

1992 ◽  
Vol 4 (11) ◽  
pp. 1282-1284 ◽  
Author(s):  
E. Jaunart ◽  
P. Megret ◽  
J.C. Froidure ◽  
P. Crahay ◽  
M. Blondel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document