Genome-wide member identification, phylogeny and expression analysis of PEBP gene family in wheat and its progenitors
The phosphatidylethanolamine binding protein (PEBP) family comprises ancient proteins found throughout the biosphere that play an important role in plant growth and development, flowering, seed development and dormancy. However, not all PEBP genes have been identified or analyzed in common wheat (Triticum aestivum L.) and its progenitors. In this study, we identified the PEBP genes in common wheat, Triticum dicoccoides, Triticum urartu and Aegilops tauschii by searching whole genome sequences, and characterized these genes by phylogenetic and transcriptome analyses. A total of 76, 38, 16 and 22 PEBP genes were identified in common wheat, T. dicoccoides, T. urartu and Ae. tauschii, respectively. Phylogenetic analysis classified the PEBP genes into four subfamilies (PEBP-like, MFT-like, TFL-like and FT-like); the PEBP-like subfamily was identified as a new subfamily with genes in this subfamily were conserved in plants. Group 2, 3 and 5 chromosomes of common wheat and its progenitors contained more PEBP genes than other chromosomes. The PEBP genes were conserved in wheat during evolution, and tandem duplication played a more important role in the amplification of PEBP genes than segmental duplication. Furthermore, transcriptome analysis revealed that PEBP genes showed tissue/organ-specific expression profiles and some PEBP genes were induced to express by biotic stresses. Quantitative real-time PCR (qRT-PCR) analysis revealed that seven randomly selected PEBP genes expressed differently during seed germination under cold, drought, flood, heat and salt stress treatments, and five of these genes (TaPEBP1, TaPEBP5, TaPEBP9, TaPEBP66 and TaPEBP69) showed significantly higher expression under different stress treatments, indicating that these genes play important roles during seed germination under stress conditions.