scholarly journals Test-retest reliability of a smartphone app for measuring core stability for two dynamic exercises

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7485 ◽  
Author(s):  
Paloma Guillén-Rogel ◽  
Cristina Franco-Escudero ◽  
Pedro J. Marín

Background Recently, there has been growing interest in using smartphone applications to assess gait speed and quantify isometric core stability exercise intensity. The purpose of this study was to investigate the between-session reliability and minimal detectable change of a smartphone app for two dynamic exercise tests of the lumbopelvic complex. Methods Thirty-three healthy young and active students (age: 22.3 ± 5.9 years, body weight: 66.9 ± 11.3 kg, height: 167.8 ± 10.3 cm) participated in this study. Intraclass correlation coefficient (ICC), coefficient of variation (%CV), and Bland–Altman plots were used to verify the reliability of the test. The standard error of measurement (SEM) and the minimum detectable difference (MDD) were calculated for clinical applicability. Results The ICCs ranged from 0.73 to 0.96, with low variation (0.9% to 4.8%) between days of assessments. The Bland–Altman plots and one-sample t-tests (p > 0.05) indicated that no dynamic exercise tests changed systematically. Our analyses showed that SEM 0.6 to 1.5 mm/s-2) and MDD (2.1 to 3.5 mm/s-2). Conclusion The OCTOcore app is a reliable tool to assess core stability for two dynamic exercises. A minimal change of 3.5 mm/s-2 is needed to be confident that the change is not a measurement error between two sessions.

2019 ◽  
Vol 126 (5) ◽  
pp. 1006-1023 ◽  
Author(s):  
Alexis Padrón-Cabo ◽  
Ezequiel Rey ◽  
Alexandra Pérez-Ferreirós ◽  
Anton Kalén

This study aimed to evaluate the test–retest reliability of soccer skill tests belonging to the F-MARC test battery. To avoid bias during talent identification and development, coaches and scouts should be using reliable tests for assessing soccer-specific skills in young male players. Fifty-two U-14 outfield male soccer players performed F-MARC soccer skill tests on two occasions, separated by 7 days. After familiarization, we administered two trial sessions of five skill tests: speed dribbling, juggling, shooting, passing, and heading. We assessed absolute reliability by expressing the standard error of measurement as a coefficient of variation with 95% limits of agreement, and we assessed relative reliability with the intraclass correlation coefficient and with Pearson’s correlation ( r). The results demonstrated satisfactory relative and absolute reliability for speed dribbling, right foot juggling, short passing, shooting a dead ball right, shooting from a pass, heading in front, and heading right. However, reliability values for left foot juggling, chest-head-foot juggling, head-left-foot-right foot-chest-head juggling, long pass, and shooting a dead ball left tests were not strong enough to suggest their usage by coaches in training or sport scientists in research.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Li-ling Chuang ◽  
Ching-yi Wu ◽  
Keh-chung Lin ◽  
Shih-yu Lur

Objective. Test-retest reliability of the myotonometer was investigated in patients with subacute stroke.Methods. Twelve patients with substroke (3 to 9 months poststroke) were examined in standardized testing position twice, 60 minutes apart, with the Myoton-3 myometer to measure tone, elasticity, and stiffness of relaxed bilateral biceps and triceps brachii muscles. Intrarater reliability of muscle properties was determined using intraclass correlation coefficient (ICC), the standard error of measurement (SEM), and the minimal detectable change (MDC).Results. Intrarater reliability of muscle properties of bilateral biceps and triceps brachii muscles were good (ICCs=0.79–0.96) except for unaffected biceps tone (ICC=0.72). The SEM and MDC of bilateral biceps and triceps brachii muscles indicated small measurement error (SEM%<10%, MDC%<25%).Conclusion. The Myoton-3 myometer is a reliable tool for quantifying muscle tone, elasticity, and stiffness of the biceps and triceps brachii in patients with subacute stroke.


2019 ◽  
Author(s):  
Chidozie Emmanuel Mbada ◽  
Oluwabunmi Esther Oguntoyinbo ◽  
Francis Oluwafunso Fasuyi ◽  
Opeyemi Ayodiipo Idowu ◽  
Adesola Christiana Odole ◽  
...  

AbstractIntroductionLow Back Pain is a common public health problem worsened by maladaptive beliefs and incongruent back pain behaviour. It is imperative to develop outcome measures to assess these beliefs among patients with chronic LBP. This study aimed to cross-culturally adapt and determine the psychometric properties of the Yoruba version of the ODI (ODI-Y).MethodsThe ODI-Y was cross-culturally adapted following the process involving forward translation, synthesis, backward translation, expert review, and pilot testing. One hundred and thirty-six patients with chronic LBP took part in the validation of the ODI-Y; 86 of these individuals took part in the test-retest reliability (within 1-week interval) of the translated instrument. Internal consistency and test-retest reliability of the ODI-Y were determined using the Cronbach’s alpha and intra-class correlation. Other psychometric properties explored included the factor structure and fit, convergent validity, standard error of measurement and the minimal detectable change.ResultsThe mean age of the respondents was 50.5±10.6years. The ODI-Y showed a high internal consistency, with a Cronbach’s alpha (α) of 0.81. Test-retest of the Yoruba version of the ODI within 1-week interval yielded an Intra-Class Correlation coefficient of 0.89. The ODI-Y yielded a two-factor structure which accounted for 51.7% of the variance but showed poor fit. Convergent of ODI-Y with the visual analogue scale was moderate (r=0.30; p=0.00). The standard error of measurement and minimal detectable change of the ODI-Y were 2.0 and 5.5.ConclusionsThe ODI was adapted into the Yoruba language and proved to have a good factor structure and psychometric properties that replicated the results of other obtainable versions. We recommend it for use among Yoruba speaking patients with low-back pain.


2020 ◽  
Vol 15 (4) ◽  
pp. 581-584 ◽  
Author(s):  
Antonio Dello Iacono ◽  
Stephanie Valentin ◽  
Mark Sanderson ◽  
Israel Halperin

Purpose: To investigate the test–retest reliability and criterion validity of the isometric horizontal push test (IHPT), a newly designed test that selectively measures the horizontal component of maximal isometric force. Methods: Twenty-four active males with ≥3 years of resistance training experience performed 2 testing sessions of the IHPT, separated by 3 to 4 days of rest. In each session, subjects performed 3 maximal trials of the IHPT with 3 minutes of rest between them. The peak force outputs were collected simultaneously using a strain gauge and the criterion equipment consisting of a floor-embedded force plate. Results: The test–retest reliability of peak force values was nearly perfect (intraclass correlation coefficient = ∼.99). Bland–Altman analysis showed excellent agreement between days with nearly no bias for strain gauge 1.2 N (95% confidence interval [CI], −3 to 6 N) and force plate 0.8 N (95% CI, −4 to 6 N). A nearly perfect correlation was observed between the strain gauge and force plate (r = .98, P < .001), with a small bias of 8 N (95% CI, 1.2 to 15 N) in favor of the force plate. The sensitivity of the IHPT was also good, with smallest worthwhile change greater than standard error of measurement for both the strain gauge (smallest worthwhile change: 29 N; standard error of measurement: 17 N; 95% CI, 14 to 20 N) and the force plate (smallest worthwhile change: 29 N; standard error of measurement: 18 N; 95% CI, 14 to 19 N) devices. Conclusions: The high degree of validity, reliability, and sensitivity of the IHPT, coupled with its affordability, portability, ease of use, and time efficacy, point to the potential of the test for assessment and monitoring purposes.


Author(s):  
Daniel Jerez-Mayorga ◽  
Álvaro Huerta-Ojeda ◽  
Luis Javier Chirosa-Ríos ◽  
Francisco Guede-Rojas ◽  
Iris Paola Guzmán-Guzmán ◽  
...  

Background: The purpose of this study was to determine the reliability for the strength and movement velocity of the concentric phase from the five Sit-to-Stand (5STS), using three incremental loads measured by a functional electromechanical dynamometer (FEMD) in healthy young adults. Methods: The average and peak strength and velocity values of sixteen healthy adults (mean ± standard deviation (SD): age = 22.81 ± 2.13 years) were recorded at 5, 10 and 15 kg. To evaluate the reliability of FEMD, the intraclass correlation coefficient (ICC), standard error of measurement (SEM) and coefficient of variation (CV) were obtained. Results: Reliability was high for the 10 kg (CV range: 3.70–4.18%, ICC range: 0.95–0.98) and 15 kg conditions (CV range: 1.64–3.02%, ICC: 0.99) at average and peak strength, and reliability was high for the 5 kg (CV range: 1.71–2.84%, ICC range: 0.96–0.99), 10 kg (CV range: 0.74–1.84%, ICC range: 0.99–1.00) and 15 kg conditions (CV range: 0.79–3.11%, ICC range: 0.99–1.00) at average and peak velocity. Conclusions: The findings of this study demonstrate that FEMD is a reliable instrument to measure the average and peak strength and velocity values during the five STS in healthy young adults.


Sports ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 58 ◽  
Author(s):  
Chris Bishop ◽  
Paul Read ◽  
Shyam Chavda ◽  
Paul Jarvis ◽  
Anthony Turner

The aims of the present study were to determine test-retest reliability for unilateral strength and power tests used to quantify asymmetry and determine the consistency of both the magnitude and direction of asymmetry between test sessions. Twenty-eight recreational trained sport athletes performed unilateral isometric squat, countermovement jump (CMJ) and drop jump (DJ) tests over two test sessions. Inter-limb asymmetry was calculated from both the best trial and as an average of three trials for each test. Test reliability was computed using the intraclass correlation coefficient (ICC), coefficient of variation (CV) and standard error of measurement (SEM). In addition, paired samples t-tests were used to determine systematic bias between test sessions and Kappa coefficients to report how consistently asymmetry favoured the same side. Within and between-session reliability ranged from moderate to excellent (ICC range = 0.70–0.96) and CV values ranged from 3.7–13.7% across tests. Significant differences in asymmetry between test sessions were seen for impulse during the isometric squat (p = 0.04; effect size = –0.60) but only when calculating from the best trial. When computing the direction of asymmetry across test sessions, levels of agreement were fair to substantial for the isometric squat (Kappa = 0.29–0.64), substantial for the CMJ (Kappa = 0.64–0.66) and fair to moderate for the DJ (Kappa = 0.36–0.56). These results show that when asymmetry is computed between test sessions, the group mean is generally devoid of systematic bias; however, the direction of asymmetry shows greater variability and is often inter-changeable. Thus, practitioners should consider both the direction and magnitude of asymmetry when monitoring inter-limb differences in healthy athlete populations.


2013 ◽  
Vol 19 (13) ◽  
pp. 1784-1791 ◽  
Author(s):  
Yvonne C Learmonth ◽  
Deirdre D Dlugonski ◽  
Lara A Pilutti ◽  
Brian M Sandroff ◽  
Robert W Motl

Background: Assessing walking impairment in those with multiple sclerosis (MS) is common, however little is known about the reliability, precision and clinically important change of walking outcomes. Objective: The purpose of this study was to determine the reliability, precision and clinically important change of the Timed 25-Foot Walk (T25FW), Six-Minute Walk (6MW), Multiple Sclerosis Walking Scale-12 (MSWS-12) and accelerometry. Methods: Data were collected from 82 persons with MS at two time points, six months apart. Analyses were undertaken for the whole sample and stratified based on disability level and usage of walking aids. Intraclass correlation coefficient (ICC) analyses established reliability: standard error of measurement (SEM) and coefficient of variation (CV) determined precision; and minimal detectable change (MDC) defined clinically important change. Results: All outcome measures were reliable with precision and MDC varying between measures in the whole sample: T25FW: ICC=0.991; SEM=1 s; CV=6.2%; MDC=2.7 s (36%), 6MW: ICC=0.959; SEM=32 m; CV=6.2%; MDC=88 m (20%), MSWS-12: ICC=0.927; SEM=8; CV=27%; MDC=22 (53%), accelerometry counts/day: ICC=0.883; SEM=28450; CV=17%; MDC=78860 (52%), accelerometry steps/day: ICC=0.907; SEM=726; CV=16%; MDC=2011 (45%). Variation in these estimates was seen based on disability level and walking aid. Conclusion: The reliability of these outcomes is good and falls within acceptable ranges. Precision and clinically important change estimates provide guidelines for interpreting these outcomes in clinical and research settings.


2015 ◽  
Vol 24 (4) ◽  
Author(s):  
Tiago Neto ◽  
Lia Jacobsohn ◽  
Ana I. Carita ◽  
Raul Oliveira

Context: The active-knee-extension test (AKE) and the straight-leg-raise test (SLR) are widely used for flexibility assessment. A number of investigations have tested the reliability of these measures, especially the AKE. However, in most studies, the sample involved subjects with normal flexibility. In addition, few studies have determined the standard error of measurement (SEM) and minimal detectable difference (MDD), which can provide complementary and more clinically relevant information than the intraclass correlation coefficient (ICC) alone. Objectives: This study aimed to determine the AKE and LSR intrarater (test-retest) reliability in subjects with flexibility deficits, as well as the correlation between the 2 tests. Design: Reliability study. Setting: Academic laboratory. Subjects: 102 recreationally active participants (48 male, 54 female) with no injury to the lower limbs and with flexibility deficits in the hamstrings muscle group. Main Outcomes: Intrarater reliability was determined using the ICC, complemented by the SEM and MDD. Measures: All participants performed, in each lower limb, 2 trials of the AKE and the SLR. Results: The ICC values found for AKE and SLR tests were, respectively, .87-.94 and .93-.97. The values for SEM were low for both tests (2.6-2.9° for AKE, 2.2-2.6° for SLR), as well as the calculated MDD (7-8° for AKE, 6-7° for SLR). A moderate to strong, and significant, correlation between AKE and SLR was determined for the dominant limb (r = .71) and the nondominant limb (r = .67). Conclusions: These findings suggest that both AKE and SLR have excellent intrarater reliability. The SEMs and MDDs recorded are also very encouraging for the use of these tests in subjects with flexibility deficits.


2017 ◽  
Vol 4 ◽  
pp. 205566831772999 ◽  
Author(s):  
Pia Wedege ◽  
Kathrin Steffen ◽  
Vegard Strøm ◽  
Arve Isak Opheim

Objectives Three-dimensional gait analysis has been recommended as part of standardized gait assessment in people with spinal cord injury. The aim was to investigate inter- and intra-session reliabilities of gait kinematics in people with spinal cord injury. Methods Fifteen adults with spinal cord injury performed two test sessions on separate days. Six infrared cameras, 16 reflective markers and the Plug-in gait model were used. For each subject, five gait trials from both sessions were included. The Gait Profile Score and the Gait Variable Score were used as kinematic outcome measures. Reliability was assessed with intraclass correlation coefficient, standard error of measurement, minimal detectable change, and Bland–Altman plots. Results Inter-session intraclass correlation coefficient for all variables was >0.82 and standard error of measurement <1.8°, except for hip rotation. Intra-session reliability was found to be high (≥0.78) and slightly better than that for inter-session. Minimal detectable change for all variables was <4.7°, except for hip rotation. Conclusions The high inter- and intra-session reliabilities indicate small intrinsic variation of gait. Thus, three-dimensional gait analysis seems to be a reliable tool to evaluate kinematic gait in adults with spinal cord injury, but caution is warranted especially for hip rotation evaluation.


2020 ◽  
pp. 1-4
Author(s):  
Emilie N. Miley ◽  
Ashley J. Reeves ◽  
Madeline P. Casanova ◽  
Nickolai J.P. Martonick ◽  
Jayme Baker ◽  
...  

Context: Total Motion Release® (TMR®) is a novel treatment paradigm used to restore asymmetries in the body (eg, pain, tightness, limited range of motion). Six primary movements, known as the Fab 6, are performed by the patient and scored using a 0 to 100 scale. Clinicians currently utilize the TMR® scale to modify treatment, assess patient progress, and measure treatment effectiveness; however, the reliability of the TMR® scale has not been determined. It is imperative to assess scale reliability and establish minimal detectable change (MDC) values to guide clinical practice. Objective: To assess the reliability of the TMR® scale and establish MDC values for each motion in healthy individuals in a group setting. Design: Retrospective analysis of group TMR® assessments. Setting: University classroom. Participants: A convenience sample of 61 students (23 males and 38 females; 25.48 [5.73] y), with (n = 31) and without (n = 30) previous exposure to TMR®. Intervention: The TMR® Fab 6 movements were tested at 2 time points, 2 hours apart. A clinician with previous training in TMR® led participant groups through both sessions while participants recorded individual motion scores using the 0 to 100 TMR® scale. Test–retest reliability was calculated using an intraclass correlation coefficient (2,1) for inexperienced, experienced, and combined student groups. Standard error of measurement and MDC values were also assessed for each intraclass correlation coefficient. Outcome Measure: Self-reported scores on the TMR® scale. Results: Test–retest reliability ranged from 0.57 to 0.95 across the Fab 6 movements, standard error of measurement values ranged from 4.85 to 11.77, and MDC values ranged from 13.45 to 32.62. Conclusion: The results indicate moderate to excellent reliability across the Fab 6 movements and a range of MDC values. Although this study is the first step in assessing the reliability of the TMR® scale for clinical practice, caution is warranted until further research is completed to establish reliability and MDC values of the TMR® scale in various settings to better guide patient care.


Sign in / Sign up

Export Citation Format

Share Document