scholarly journals Creating a legacy of oiled wildlife response preparedness through the post-Macondo Oil Spill Response - Joint Industry Project

Author(s):  
Michael Ziccardi ◽  
J.D. Bergeron ◽  
B. Louise Chilvers ◽  
Adam Grogan ◽  
Charlie Hebert ◽  
...  

ABSTRACT In 2015, an ambitious wildlife response preparedness project was initiated; funded as part of the post-Macondo IPIECA-IOGP (International Association of Oil and Gas Producers) Oil Spill Response Joint Industry Project (OSR-JIP). The Global Oiled Wildlife Response System (GOWRS) Project, which involved 11 leading wildlife response organizations from seven countries, aimed to develop an international framework for oiled wildlife response as well as encourage the further development of wildlife response preparedness by industry and other stakeholders. This paper will provide an overview and assessment of the key outcomes of both the JIP-funded phase of the project (2015-16; development of internationally agreed standards and common operating procedures) and the second industry-funded phase (2017-18; focused on response readiness) in order to provide key background information to support the movement towards operationalizing the system.

Author(s):  
R. Santner ◽  
M. Cramer

ABSTRACT In light of the Deepwater Horizon accident, the oil and gas industry has undertaken various national and global initiatives to advance our knowledge, understanding and approach to oil spill preparedness and response. Notable amongst these, are the IPIECAIOGP (International Association of Oil and Gas Producers) Oil Spill Response Joint Industry Project (OSR-JIP) and the American Petroleum Institute's Joint Industry Task Force (APIJITF). These alone represent million dollars of investment and the collective contribution of hundreds of subject matter experts from around the world. The above two initiatives have produced numerous technical reports, good practice guides and recommended practices that have offered significant advances in industry's oil spill preparedness and response capabilities. Additionally, the various research projects conducted primarily by API have greatly enhanced the understanding of the efficacy and fate and effects of selected response options with a focus on subsea dispersant injection. This paper provides an overview and assessment of the key outcomes of these programs as well as highlighting some of the key breakthrough projects including spill impact mitigation assessment (SIMA), incident management, tiered provision of response capability, wildlife response and dispersants. The authors also describe briefly how the industry has continued this legacy through ongoing API and IPIECA/IOGP programs, together with a brief exploration of the full extent of value which may be derived from these kinds of initiatives.


2001 ◽  
Vol 2001 (1) ◽  
pp. 513-515
Author(s):  
Peter Mark Taylor ◽  
James Anthony Thornborough ◽  
Mehrdad Nazari

ABSTRACT The collapse of the former Soviet Union a decade ago has led to increasing interest in the Caspian region as a source of crude oil and gas for global markets. This paper explains the project scope and the framework under which a sustainable national oil spill response system is being developed in Turkmenistan, a former Soviet Republic and one of the Caspian's littoral states. The key success factors of the oil spill contingency planning project in Turkmenistan, which are believed to be relevant for similar activities under development in other parts of the Caspian region, include the support of high-level government representation; a participatory and cross-sectoral approach; adopting a standardized process based on international guidance and Conventions; alliance of local and international experts to provide input and support the progress of the project; and accumulation of knowledge and its dissemination using digital media.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2976-2995 ◽  
Author(s):  
Janne Fritt-Rasmussen ◽  
Kim Gustavson ◽  
Susse Wegeberg ◽  
Eva Friis Møller ◽  
Rasmus Dyrmose Nørregaard ◽  
...  

ABSTRACT Research on the fate and effects of herding agents used to contain and thicken oil slicks for in situ burning in Arctic waters continues under the auspices of the International Association of Oil and Gas Producers Arctic Oil Spill Response Technology – Joint Industry Program (JIP). In 2014/2015 laboratory studies were conducted on the fate and effects of herders. The purpose of the studies was to improve the knowledge base used to evaluate the environmental risk of using herders in connection with in situ burning for oil spill response in Arctic seas. Two herding agents were studied (OP 40 and ThickSlick 6535). Laboratory-scale herding and burning experiments were carried out for investigating the physical fate of the two herders during combustion of Alaska North Slope and Grane crude oils (fresh and emulsified). The results showed that after burning, the herder was mainly found on the water surface, and only small concentrations of herders were found in the water column (0.2–22.8 mg/L). The inherent properties of herders in relation to toxicity and bioaccumulation on the high Arctic copepods (Calanus hyperboreus), as well as the biodegradability of herders were studied under arctic conditions. The results indicated that a distinct mortality was seen at the highest test concentrations of the herders. However, the concentration of herders required to produce acute toxicity in the laboratory was approximately three orders of magnitude higher than the concentrations measured in the water column when herders were used to conduct an in situ burn in the laboratory. OP-40 might bio-accumulate whereas TS6535 might not. TS6535 was mostly degraded within 7 days, whereas the degradation of OP-40 was insignificant over 28 days. Since herders are mainly considered as a surface active chemical compound, the potential impacts of herders on Arctic seabird feathers (from legally hunted Thick-Billed Murre and Common Eider) were investigated. Different dosages of herders were tested; high dosages that might be present just after the application of the herder and low dosages (approximately monolayers) likely to occur for a significant time and distance from the operations. Low dosages corresponding to approximately monolayers of OP-40 and TS6535 did not cause feathers to sink; however they did absorb more water than the controls. The high dosages caused measured damages to the feather microstructure. Finally, laboratory burning experiments were carried out to determine if there was a difference in the composition of smoke plumes from mechanically contained burns versus herded oil burns. Herder was not measured in the smoke plumes, and there were no other noticeable differences in combustion between the two methods of containment (herder vs. metal ring).


1999 ◽  
Vol 1999 (1) ◽  
pp. 1193-1194 ◽  
Author(s):  
Masaki Saito ◽  
Joji Ouchl

ABSTRACT Generally it takes at least several hours (a few weeks if unlucky) for the vessels, instruments, and responders to arrive at the polluted area. Until that happens, there are no means for preventing the oil spreading except “self-defense” by neighboring people such as fishermen, volunteers, and staff of the local government. After spreading out along the shoreline, they should keep their own local shoreline clean from oil landing while the professional response in the central area is operated. temporary response instruments are necessary for such initial response and self-defense; otherwise, amateur responders have little more than their hands for products to use for the oil spill response. This paper describes that the fishery net system with bark is one of the effective instruments for such a purpose, especially for recovering the viscous oil.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1487-1506 ◽  
Author(s):  
Joseph V. Mullin

Abstract 2017-161 Over the past four decades, the oil and gas industry has made significant advances in being able to detect, contain and clean up spills and mitigate the residual consequences in Arctic environments. Many of these advances were achieved through collaborative research programs involving industry, academic and government partners. The Arctic Oil Spill Response Technology - Joint Industry Programme (JIP), was launched in 2012 and completed in early 2017 with the objectives of building on an already extensive knowledge base to further improve Arctic spill response capabilities and better understand the environmental issues involved in selecting and implementing the most effective response strategies. The JIP was a collaboration of nine oil and gas companies (BP, Chevron, ConocoPhillips, Eni, ExxonMobil, North Caspian Operating Company, Shell, Statoil, and Total) and focused on six key areas of oil spill response: dispersants; environmental effects; trajectory modeling; remote sensing; mechanical recovery and in-situ burning. The JIP provided a vehicle for sharing knowledge among the participants and international research institutions and disseminating information to regulators, the public and stakeholders. The network of engaged scientists and government agencies increased opportunities to develop and test oil spill response technologies while raising awareness of industry efforts to advance the existing capabilities in Arctic oil spill response. The JIP consisted of two phases, the first included technical assessments and state of knowledge reviews resulting in a library of sixteen documents available on the JIP website. The majority of the JIP efforts focused on Phase 2, actual experiments, and included laboratory, small and medium scale tank tests, and field research experiments. Three large-scale field tests were conducted in the winter and spring months of 2014–2016 including recent participation of the JIP in the 2016 NOFO oil on water exercise off Norway. The JIP was the largest pan-industry programme dedicated to oil spill response in the Arctic, ever carried out. Twenty seven research projects were successfully and safely conducted by the world’s foremost experts on oil spill response from across industry, academia, and independent scientific institutions in ten countries. The overarching goal of the research was to address the differing aspects involved in oil spill response, including the methods used, and their applicability to the Arctic’s unique conditions. All research projects were conducted using established protocols and proven scientific technologies, some of which were especially adjusted for ice conditions. This paper describes the scope of the research conducted, results, and key findings. The JIP is committed to full transparency in disseminating the results through peer reviewed journal articles, and all JIP research reports are available free of charge at www.arcticresponsetechnology.org.


2008 ◽  
Vol 2008 (1) ◽  
pp. 615-619 ◽  
Author(s):  
Tim L. Robertson ◽  
S. Anil Kumar

ABSTRACT Technological advancements in oil spill response systems have contributed to more proficient oil spill response operations. Yet, there are still times when oil is being shipped but environmental conditions, such as wind, waves, temperature, and visibility, preclude effective spill response operations. The Response Gap is this window between the point of maximum mechanical response capacity and the weather-based limits of oil transportation. To quantify the Response Gap for two operating areas in Prince William Sound (PWS), Alaska, historical datasets of the environmental factors known to affect the open-water mechanical response system were assembled. Each dataset contained observations related to four environmental factors: wind, sea state, temperature, and visibility. These datasets were used in a “hind-cast” to evaluate how often environmental conditions exceed the response operating limits. Response operating limits were determined based on a thorough review of the published literature, existing contingency plans, regulatory standards, and after-action reports, with the objective of establishing realistic limits for the existing open-water response system. Response limits were then coded using the colors red (response not possible), yellow (response possible but impaired), and green (response possible) for a particular environmental factor during each operational period. A Response Gap Index (RGI) was calculated to incorporate the interactions between environmental factors. Once the RGI was computed for each observational period, the dataset was summarized to produce an estimate of the amount of time that the Response Gap existed. The met-ocean climatology is characterized using histograms and joint-probability distribution plots, with the RGI superimposed. At Hinchinbrook Entrance, sea state exceeded the operating limits 19.2% of the time and wind exceeded the limits 2.9% of the time. When the environmental factors were considered together, the response limitations were exceeded 37.7% of the time. Not surprisingly, the response limits were exceeded more often in winter (65.4% of the time) than in summer (15.6% of the time). Results for Central PWS indicated that the response limitations were exceeded only 12.6% of the time. The paper discusses ways to improve the present subjective quantification of response limits, particularly through additional field trials and modeling of mechanical recovery systems.


2003 ◽  
Vol 2003 (1) ◽  
pp. 371-376 ◽  
Author(s):  
Hélder O. Ferreira ◽  
Alexandre Cabrai ◽  
Álvaro Souza Junior

ABSTRACT The Brazilian oil and gas E&P sector has been experiencing important changes since the end of the state monopoly in 1998. These changes include a new regulatory environment which is still under construction, in particular the requirements for environmental protection. In this context, Resolution 293 of Brazilian National Environmental Council (CONAMA) was enacted regulating Facility Response Plans for oil spill incidents. These plans, which should be approved by the competent authority, include a vulnerability analysis that should discuss the probability of oil reaching certain areas as well as the environmental sensitivity of these areas. Oil spill modeling is an important tool to estimating the areas likely to be affected by an oil spill. Although oil spill modeling is also part of the environmental studies required in the environmental permitting process for oil E&P activities, there are not well defined criteria to compose the oil spill scenarios to be modeled. In order to demonstrate the impacts of different approaches in the results of oil spill modeling, a case study is presented related to an offshore drilling activity.


2003 ◽  
Vol 2003 (1) ◽  
pp. 1035-1037 ◽  
Author(s):  
Michael Kirwan John Short

ABSTRACT On the 18th January 2000 a broken pipeline owned and operated by the oil company Petrobras spilt some 1300 tonne of bunker fuel into Guanabara Bay, Rio de Janeiro. The wildlife response was divided amongst 2 operational strategies and included – avian fauna and cetaceans. This paper deals with the cetacean response only. Cetaceans are generally not considered as an important feature of an oil spill response. Contingency planning for cetaceans in oil spills is now becoming an important element for preparedness for some countries. The cetacean response in Guanabara Bay specifically targeted a pod of about 70 members of the species Sotalia fluviatilis, a small dolphin that inhabits the bay. The response included the development of a plan that included a response system, a monitoring program and action plans. The response system detailed the mechanism for the plan to work and adopted the incident control management system. The monitoring program related to the study of any short term or long term deleterious effects resulting from the spill and consisted of basic spatial, temporal and behavioural studies. Action plans were developed specific to the character of Guanabara Bay and included the rescue and rehabilitation strategies necessary to respond to oil affected cetaceans. A training program was then developed and implemented to personnel who were to enact the cetacean response.


2014 ◽  
Vol 2014 (1) ◽  
pp. 14-25
Author(s):  
Lucas Fantinato ◽  
Adriano Ranierin ◽  
Pedro Martins ◽  
Gustavo Lutz

ABSTRACT In the past, Brazilian Oil Spill Response Plans focused on the definition of response strategies in offshore environments, but were insufficient when it came to shoreline protection. After the occurrence of major oil spill accidents around the world and events of great repercussion in Brazil and with the intensification of oil and gas E&P activities in locations close to the coast and near environmentally sensitive areas in the country (such as Camamu-Almada and the Jequitinhonha basin), the need for additional nearshore response studies became of the utmost importance. Recently developed documents address the environmental characterization of the coast and indicate the appropriate response strategies, but a more action-oriented approach is needed. For that purpose, based on the best practices in shoreline protection worldwide, a methodology is being implemented so as to provide consistent preparedness support for the protection of nearshore resources. The methodology uses the Brazilian licensing mandatory documents in order to identify the appropriate level of protection preparedness for each of the vulnerable segments of shoreline within the domain of the E&P activity. Once the proper level of preparedness has been identified, the method indicates how to attain such result by presenting a set of tools, such as: TRP (Tactical Response Plan), VoOs (Vessel of Oportunity) Program, Advances Bases and Full Deployment Exercises. This paper provides an overview of the methodology, followed by a case study in Brazil which helps illustrate how the level of preparedness is determined and how the proposed tools help achieve such result. Therefore, it allows assessing the effectiveness of this new approach in the country. Considering Brazil's growing E&P potential, the long extent of its coastline and the abundance of sensitive resources alongshore, the methodology should be applied to other E&P projects developed in the country.


Sign in / Sign up

Export Citation Format

Share Document