scholarly journals Computational Analysis of the Stability of 2D Heat Equation on Elliptical Domain Using Finite Difference Method

Author(s):  
Mehwish Naz Rajput ◽  
Asif Ali Shaikh ◽  
Shakeel Ahmed Kamboh

Aims: The aim and objective of the study to derive and analyze the stability of the finite difference schemes in relation to the irregularity of domain. Study Design: First of all, an elliptical domain has been constructed with the governing two dimensional (2D) heat equation that is discretized using the Finite Difference Method (FDM). Then the stability condition has been defined and the numerical solution by writing MATLAB codes has been obtained with the stable values of time domain. Place and Duration of Study: The work has been jointly conducted at the MUET, Jamshoro and QUEST, Nawabshah Pakistan from January 2019 to December 2019.  Methodology: The stability condition over an elliptical domain with the non-uniform step size depending upon the boundary tracing function is derived by using Von Neumann method. Results: From the results it was revealed that stability region for the small number of mesh points remains larger and gets smaller as the number of mesh nodes is increased. Moreover, the ranges for the time steps are defined for varied spatial step sizes that help to find the stable solution. Conclusion: The corresponding stability range for number of nodes N=10, 20, 30, 40, 50, and 60 was found respectively. Within this range the solution remains smooth as time increases. The results of this study attempt to provide the stable solution of partial differential equations on irregular domains.

2021 ◽  
Vol 70 ◽  
pp. 124-136
Author(s):  
Firas Dhaouadi ◽  
Emilie Duval ◽  
Sergey Tkachenko ◽  
Jean-Paul Vila

In this paper, we discuss some limitations of the modified equations approach as a tool for stability analysis for a class of explicit linear schemes to scalar partial differential equations. We show that the infinite series obtained by Fourier transform of the modified equation is not always convergent and that in the case of divergence, it becomes unrelated to the scheme. Based on these results, we explain when the stability analysis of a given truncation of a modified equation may yield a reasonable estimation of a stability condition for the associated scheme. We illustrate our analysis by some examples of schemes namely for the heat equation and the transport equation.


2021 ◽  
Author(s):  
Samaneh Zabihi ◽  
reza ezzati ◽  
F Fattahzadeh ◽  
J Rashidinia

Abstract A numerical framework based on fuzzy finite difference is presented for approximating fuzzy triangular solutions of fuzzy partial differential equations by considering the type of $[gH-p]-$differentiability. The fuzzy triangle functions are expanded using full fuzzy Taylor expansion to develop a new fuzzy finite difference method. By considering the type of gH-differentiability, we approximate the fuzzy derivatives with a new fuzzy finite-difference. In particular, we propose using this method to solve non-homogeneous fuzzy heat equation with triangular initial-boundary conditions. We examine the truncation error and the convergence conditions of the proposed method. Several numerical examples are presented to demonstrate the performance of the methods. The final results demonstrate the efficiency and the ability of the new fuzzy finite difference method to produce triangular fuzzy numerical results which are more consistent with existing reality.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1333 ◽  
Author(s):  
Appanah Appadu ◽  
Bilge İnan ◽  
Yusuf Tijani

In this paper, we construct four numerical methods to solve the Burgers–Huxley equation with specified initial and boundary conditions. The four methods are two novel versions of nonstandard finite difference schemes (NSFD1 and NSFD2), explicit exponential finite difference method (EEFDM) and fully implicit exponential finite difference method (FIEFDM). These two classes of numerical methods are popular in the mathematical biology community and it is the first time that such a comparison is made between nonstandard and exponential finite difference schemes. Moreover, the use of both nonstandard and exponential finite difference schemes are very new for the Burgers–Huxley equations. We considered eleven different combination for the parameters controlling diffusion, advection and reaction, which give rise to four different regimes. We obtained stability region or condition for positivity. The performances of the four methods are analysed by computing absolute errors, relative errors, L 1 and L ∞ errors and CPU time.


Author(s):  
Hongfei fu ◽  
Hong Wang

AbstractWe develop a fast space-time finite difference method for space-time fractional diffusion equations by fully utilizing the mathematical structure of the scheme. A circulant block preconditioner is proposed to further reduce the computational costs. The method has optimal-order memory requirement and approximately linear computational complexity. The method is not lossy, as no compression of the underlying numerical scheme has been employed. Consequently, the method retains the stability, accuracy, and, in particular, the conservation property of the underlying numerical scheme. Numerical experiments are presented to show the efficiency and capacity of long time modelling of the new method.


Sign in / Sign up

Export Citation Format

Share Document