Description of a Model to Comprehend the Dynamics of an Observable Phenomenon in the View of Newtonian Mechanics

Author(s):  
Vigneswaran Ramamoorthy
2014 ◽  
Vol 6 (1) ◽  
pp. 1032-1035 ◽  
Author(s):  
Ramzi Suleiman

The research on quasi-luminal neutrinos has sparked several experimental studies for testing the "speed of light limit" hypothesis. Until today, the overall evidence favors the "null" hypothesis, stating that there is no significant difference between the observed velocities of light and neutrinos. Despite numerous theoretical models proposed to explain the neutrinos behavior, no attempt has been undertaken to predict the experimentally produced results. This paper presents a simple novel extension of Newton's mechanics to the domain of relativistic velocities. For a typical neutrino-velocity experiment, the proposed model is utilized to derive a general expression for . Comparison of the model's prediction with results of six neutrino-velocity experiments, conducted by five collaborations, reveals that the model predicts all the reported results with striking accuracy. Because in the proposed model, the direction of the neutrino flight matters, the model's impressive success in accounting for all the tested data, indicates a complete collapse of the Lorentz symmetry principle in situation involving quasi-luminal particles, moving in two opposite directions. This conclusion is support by previous findings, showing that an identical Sagnac effect to the one documented for radial motion, occurs also in linear motion.


1995 ◽  
Vol 22 (2) ◽  
pp. 43-83 ◽  
Author(s):  
Tom Mouck

This paper provides an overview of the influence of Newtonian mechanics on the development of neoclassical economic theory and highlights Fisher's role in the popularization of the resulting mechanical conception of economics. The paper also portrays Fisher's The Nature of Capital and Income — a work which has been aptly characterized as the “first economic theory of accounting” — as the first move toward the colonization of accounting by economics. The result of Fisher's influence has been a paradigmatic linkage between the Newtonian world view of science, neoclassical economics, and mainstream academic accounting thought. The picture that emerges from this linkage is then used as a backdrop against which the emerging challenges to economics-based accounting thought are highlighted.


2021 ◽  
Vol 2 (1) ◽  
pp. 63-80
Author(s):  
Noushad Bin Jamal Bin Jamal M ◽  
Hsiao Wei Lee ◽  
Chebolu Lakshmana Rao ◽  
Cemal Basaran

Traditionally dynamic analysis is done using Newton’s universal laws of the equation of motion. According to the laws of Newtonian mechanics, the x, y, z, space-time coordinate system does not include a term for energy loss, an empirical damping term “C” is used in the dynamic equilibrium equation. Energy loss in any system is governed by the laws of thermodynamics. Unified Mechanics Theory (UMT) unifies the universal laws of motion of Newton and the laws of thermodynamics at ab-initio level. As a result, the energy loss [entropy generation] is automatically included in the laws of the Unified Mechanics Theory (UMT). Using unified mechanics theory, the dynamic equilibrium equation is derived and presented. One-dimensional free vibration analysis with frictional dissipation is used to compare the results of the proposed model with that of a Newtonian mechanics equation. For the proposed entropy generation equation in the system, the trend of predictions is comparable with the reported experimental results and Newtonian mechanics-based predictions.


Author(s):  
Moataz H. Emam

This book is an introduction to the modern methods of the general theory of relativity, tensor calculus, space time geometry, the classical theory of fields, and a variety of theoretical physics oriented topics rarely discussed at the level of the intended reader (mid-college physics major). It does so from the point of view of the so-called principle of covariance; a symmetry that underlies most of physics, including such familiar branches as Newtonian mechanics and electricity and magnetism. The book is written from a minimalist perspective, providing the reader with only the most basic of notions; just enough to be able to read, and hopefully comprehend, modern research papers on these subjects. In addition, it provides a (hopefully short) preparation for the student to be able to conduct research in a variety of topics in theoretical physics; with particular emphasis on physics in curved spacetime backgrounds. The hope is that students with a minimal mathematical background in calculus and only some introductory courses in physics may be able to study this book and benefit from it.


2018 ◽  
Vol 33 (29) ◽  
pp. 1850169
Author(s):  
J. H. Field

Previous special relativistic calculations of gravitational redshift, light deflection and Shapiro delay are extended to include perigee advance. The three classical, order G, post-Newtonian predictions of general relativity as well as general relativistic light-speed-variation are therefore shown to be also consequences of special relativistic Newtonian mechanics in Euclidean space. The calculations are compared to general relativistic ones based on the Schwarzschild metric equation, and related literature is critically reviewed.


Author(s):  
P. Kyle Stanford

This chapter seeks to explore and develop the proposal that even our best scientific theories are not (as the scientific realist would have it) accurate descriptions of how things stand in otherwise inaccessible domains of nature but are instead simply powerful conceptual tools or instruments for engaging practically with the world around us. It describes a number of persistent challenges facing any attempt to apply the American Pragmatists’ global conception of all ideas, beliefs, theories, and cognitions quite generally as such tools or instruments to only a restricted class or category of such entities (such as our best scientific theories) instead. It then seeks to overcome these challenges by regarding scientific instrumentalism as simply applying the scientific realist’s own attitude toward a theory like Newtonian mechanics to even the most empirically successful and instrumentally powerful theory we have in any given scientific domain.


Sign in / Sign up

Export Citation Format

Share Document