scholarly journals Study on Physiological Parameters and Economics of Rice Cultivation under Different Establishment Methods and Water Management Practices

Author(s):  
S. Selvakumar ◽  
S. Sakthivel ◽  
Akihiko Kamoshita ◽  
R. Babu ◽  
S. Thiyageshwari ◽  
...  

A field experiment was conducted at Tamil Nadu Agricultural University, Agricultural College and Research Institute, Madurai, Tamil Nadu, India, during summer 2019 to study about the changes in physiological parameters of rice under various establishment and water management strategies and to find out the suitable method of rice establishment and irrigation management practices for tank irrigated command areas during water scarcity situation. Field experiment comprised of four establishment methods in combination with four irrigation management strategies. Medium duration fine grain rice variety TKM 13 was used for the study. Results of the study revealed that machine transplanting under unpuddled soil combined with irrigation after formation of hairline crack recorded improved physiological parameters and yield. It was on par with machine transplanting under unpuddled soil combined with irrigation when water level reaches 5 cm below soil surface. Higher gross return, net return and B:C ratio were observed with machine transplanting under unpuddled soil combined with irrigation after formation of hairline crack. This was followed by machine transplanting under unpuddled soil combined with irrigation when water level reaches 5 cm below soil. Hence, the result of study concluded that machine transplanting under unpuddled soil combined with irrigation when water level reaches 5 cm below soil surface can be recommended as the suitable technology for the farmers of tank irrigated command area to get higher return with minimum use of resources under water scarcity situation.

1992 ◽  
Vol 2 (1) ◽  
pp. 121-125 ◽  
Author(s):  
George J. Hochmuth

Efficient N management practices usually involve many potential strategies, but always involve choosing the correct amount of N and the coupling of N management to efficient water management. Nitrogen management strategies are integral parts of improved production practices recommended by land-grant universities such as the Institute of Food and Agricultural Sciences, Univ. of Florida. This paper, which draws heavily on research and experience in Florida, outlines the concepts and technologies for managing vegetable N fertilization to minimize negative impacts on the environment.


2017 ◽  
Vol 9 (2) ◽  
pp. 79-84 ◽  
Author(s):  
SC Barman ◽  
MA Ali ◽  
HJ Hiya ◽  
KR Sarker ◽  
MA Sattar

A field experiment was carried out during the Boro season 2013 to find out the effects of water management practices on rice yield performance and water productivity index at Old Brahmaputra flood plain paddy land, Muktagacha, Mymensingh. The experiment was laid out in randomized complete block design (RCBD) with six (6) irrigation treatments. Two treatments, T1 and T3 were kept under continuous standing water levels (10 cm and 5 cm respectively) while in treatment T5 irrigation water was supplied for 1st 3 weeks then followed mid season drain out and re-flooded at flowering stage. Three alternate wetting and drying irrigation treatments, T2, T4 and T6 were selected in which irrigation water was applied when water level dropped 20cm, 10cm and 15cm below ground level, respectively. All the irrigation treatments significantly affected the rice yield and yield contributing parameters. The study revealed that the highest grain yield (5950 kg ha-1) was found in treatment T5 which was identical with AWDI treatment T4 (5820 kg ha-1) followed by AWDI treatment T6 (5460 kg ha-1). On the contrary, rice yield of 3350 kg ha-1, 4470 kg ha-1 and 4810 kg ha-1 were found in the treatment T1, T2 and T3, respectively. It was found that AWDI treatment T2 showed maximum water savings (15.1%) followed by T6 (11.3%), T4 (7.59%) and T5 (3.8%), however rice yield in the treatment T2 (4470 kg ha-1) was significantly lower compared to T6, T4 and T5 treatment. Therefore, it may be inferred that treatment T4 (AWDI; irrigation when water level fell 10 cm from ground level), T5 (Irrigation for 1st 3 weeks, then mid-season drain out and re-flooding at flowering) and T6 (AWDI; irrigation when water level fell 15cm from ground level) would be the feasible choice for the water savings, higher rice yield as well as maximum water productivity index (0.478, 0.472 and 0.467, respectively) for sustaining rice farming during the dry Boro season in Bangladesh.J. Environ. Sci. & Natural Resources, 9(2): 79-84 2016


2017 ◽  
Vol 54 (3) ◽  
pp. 382-398 ◽  
Author(s):  
F.H.C. RUBIANES ◽  
B.P. MALLIKARJUNA SWAMY ◽  
S.E. JOHNSON-BEEBOUT

SUMMARYAs zinc (Zn) fertilizer and water management affect the expression of Zn-enriched grain traits in rice, we studied the effect of Zn fertilizer and water management on Zn uptake and grain yield of different biofortification breeding lines and the possible biases in selection for high grain Zn content. The first field experiment showed that longer duration genotypes had higher grain Zn uptake rate than shorter duration genotypes during grain filling. In the first greenhouse experiment, neither application of Zn fertilizer at mid-tillering nor application at flowering significantly increased the grain Zn concentration. In the second greenhouse experiment, application of alternate wetting and drying (AWD) significantly increased the available soil Zn and plant Zn uptake but not grain Zn concentration. Terminal drying (TD) did not increase the available soil Zn or grain Zn contents. The second field experiment confirmed that differences in TD were not important in understanding differences between genotypes. Zn application is not always necessary to breeding trials unless there is a severe Zn deficiency and there is no need to carefully regulate TD prior to harvest.


2005 ◽  
Vol 45 (9) ◽  
pp. 1181 ◽  
Author(s):  
G. Kaine ◽  
D. Bewsell ◽  
A. Boland ◽  
C. Linehan

Market research was conducted to develop an extension program targeting the specific irrigation management needs of growers in the stone and pome fruit industry within the Goulburn Valley, Victoria. The process of integrating market research with extension practice proved challenging, as it required the development of an extension program that was fundamentally different from what was originally envisaged. However, it was essential to achieve this integration in order to meet the original objectives for the extension program as set by the funding body. We found, in most cases, that the motivation for stone and pome fruit growers in the Goulburn Valley to change orchard irrigation management practices was not because they needed to save water, or to increase water use efficiency. Instead, growers were changing practices in order to save time irrigating, improve the scope for managerial flexibility in the orchard, or when redeveloping their orchard to a closer planting design. These findings suggest that growers in the Goulburn Valley are more likely to respond to an extension program consistent with these motivations rather than a program promoting water use efficiency.


EDIS ◽  
2013 ◽  
Vol 2013 (4) ◽  
Author(s):  
Lincoln Zotarelli ◽  
Libby Rens ◽  
Charles Barrett ◽  
Daniel J. Cantliffe ◽  
Michael D. Dukes ◽  
...  

In terms of water use efficiency, the traditional seepage irrigation systems commonly used in areas with high water tables are one of the most inefficient methods of irrigation, though some irrigation management practices can contribute to better soil moisture uniformity. Subsurface drip irrigation systems apply water below the soil surface by microirrigation, improving the water distribution and time required to raise the water table for seepage irrigation. This 6-page fact sheet was written by Lincoln Zotarelli, Libby Rens, Charles Barrett, Daniel J. Cantliffe, Michael D. Dukes, Mark Clark, and Steven Lands, and published by the UF Department of Horticultural Sciences, March 2013. http://edis.ifas.ufl.edu/hs1217


Author(s):  
Mwadini Khatib ◽  
Joy Obando ◽  
Shadrack Murimi

Kiladeda River in Pangani Basin, Tanzania plays a vital role of providing water for agricultural activities of the sub-catchment. However, it is experiencing a problem of inequitable distribution of irrigation water among farmers. Cross-sectional data was collected from farmers both in upstream and downstream using questionnaires, while river discharge measurements were conducted in referenced spot gauging stations. WEAP model was used to analyze water demand and allocation among farmers. Furrow irrigation (94%) and plastic buckets (6%) were the main irrigation water management practices. The model results revealed a water shortage of 46.4% of the total irrigation water required. The annual irrigation water demand and unmet demand were 13.93mm3 and 7.47mm3, respectively, and are both expected to increase twice in 2020. This high water demand for irrigation could be the main cause of excessive water abstraction. A partnering approach is recommended to improve irrigation water management, reviewing of laws, regulations, and water rights.


Author(s):  
Vesna Popović ◽  
Vladan Ugrenović

Studying the future of food and farming, scientists have called for sustainable intensification to simultaneously raise yields and increase efficiency in the use of inputs and reduce the negative environmental effects of food production. Sustainable intensification requires sustainable agricultural techniques such as improved water management practices that result in higher, stabilized, and diversified agricultural production, and greater resilience to climate change without the deterioration of natural resources and the environment. This chapter is devoted to the role of irrigation development in Serbian agriculture and its contribution to the development of the green economy in the Republic of Serbia.


2018 ◽  
Vol 3 (4) ◽  
pp. 54 ◽  
Author(s):  
Glenn Baxter ◽  
Panarat Srisaeng ◽  
Graham Wild

Airports are an essential infrastructure to facilitate aviation. The substantial growth of aviation has led to a significant increase in water usage by airports. Airports also generate large volumes of wastewater that may include contaminants. Hence, understanding sustainable water management practices is essential in the aviation industry. In this study, an exploratory research design was utilized in the examination of the sustainable water management strategies and systems at Kansai International Airport from 2002 to 2016. The qualitative data were examined using document analysis as part of a case study. The quantitative data were analyzed using regression analysis as part of a longitudinal study. The airport has been able to reduce the total water consumption, water consumption per passenger, and water consumption per aircraft movement, even with increased traffic in recent years. The airport sources water from the municipal authorities and reclaims water for non-potable water uses. The airport conducts regular water quality tests which measure the Chemical oxygen demand, total nitrogen, and total phosphates. The airport’s onsite wastewater processing centre processes all wastewaters, which discharges non-reclaimed water into Osaka Bay. With a decrease in water consumption, there has similarly been a decrease in the need to treat wastewater, while the reclaimed water ratio has increased over the period of the study.


2015 ◽  
Vol 154 (6) ◽  
pp. 1015-1025 ◽  
Author(s):  
P. P. NHẪN ◽  
L. V. HÒA ◽  
C. N. QUÍ ◽  
N. X. HUY ◽  
T. P. HỮU ◽  
...  

SUMMARYRice production in the Mekong Delta, Vietnam is threatened by future water scarcity caused by changing rainfall patterns and increasing irrigation costs. To improve resilience of the triple rice farming system to future climate-related stresses, profitability needs to be increased through water use efficiency, fertilizer management and planting methods.During four cropping seasons in 2011–13, alternate wetting and drying (AWD) irrigation was applied in the triple rice production area within An Giang Province, Vietnam. An issue with the application of AWD is the prevalence of acid sulphate soils in the Mekong Delta. Three types of irrigation management were tested; continuously flooded (CF) where the water in the paddy was maintained at 5 cm; AWD where the water level was allowed to fall to 15 cm below the ground surface, at which point the field was irrigated until the water level was at 1 cm above the ground surface (designated −15 cm); AWD where the water level was allowed to fall to 30 cm below the ground surface before irrigation until the water level was at 1 cm above the ground surface (designated −30 cm). Two further experiments were also undertaken which examined the planting method (transplant v. direct sowing) and phosphorus rate on rice yield. There was no effect on yield caused by P fertilizer rate and irrigation management in any year, and there was no significant effect on soil pH or salinity caused by irrigation management. Overall net profitability was greatest for the AWD treatments because of the reduction in pumping and labour costs in the dry season. Transplanted rice improved yields, but the labour cost reduced overall profitability. The study shows that AWD (−15 cm) can be safely applied in acid sulphate soil areas within the triple rice areas of An Giang Mekong Delta and saved at least 0·27 of total irrigated water quantity used during three of the six cropping seasons. The increased profitability of the AWD rice production system will help to improve the resilience of triple rice cropping systems to future water scarcity.


2015 ◽  
Vol 19 (1) ◽  
pp. 293-307 ◽  
Author(s):  
A. Fernald ◽  
S. Guldan ◽  
K. Boykin ◽  
A. Cibils ◽  
M. Gonzales ◽  
...  

Abstract. Southwestern US irrigated landscapes are facing upheaval due to water scarcity and land use conversion associated with climate change, population growth, and changing economics. In the traditionally irrigated valleys of northern New Mexico, these stresses, as well as instances of community longevity in the face of these stresses, are apparent. Human systems have interacted with hydrologic processes over the last 400 years in river-fed irrigated valleys to create linked systems. In this study, we ask if concurrent data from multiple disciplines could show that human-adapted hydrologic and socioeconomic systems have created conditions for resilience. Various types of resiliencies are evident in the communities. Traditional local knowledge about the hydrosocial cycle of community water management and ability to adopt new water management practices is a key response to disturbances such as low water supply from drought. Livestock producers have retained their irrigated land by adapting: changing from sheep to cattle and securing income from outside their livestock operations. Labor-intensive crops decreased as off-farm employment opportunities became available. Hydrologic resilience of the system can be affected by both human and natural elements. We find, for example, that there are multiple hydrologic benefits of traditional irrigation system water seepage: it recharges the groundwater that recharges rivers, supports threatened biodiversity by maintaining riparian vegetation, and ameliorates impacts of climate change by prolonging streamflow hydrographs. Human decisions to transfer water out of agriculture or change irrigation management, as well as natural changes such as long-term drought or climate change, can result in reduced seepage and the benefits it provides. We have worked with the communities to translate the multidisciplinary dimensions of these systems into a common language of causal loop diagrams, which form the basis for modeling future scenarios to identify thresholds and tipping points of sustainability. Early indications are that these systems, though not immune to upheaval, have astonishing resilience.


Sign in / Sign up

Export Citation Format

Share Document