scholarly journals Impact of UREAStable on Soil Property, Nitrogen Use Efficiency and Yield of Durum Wheat under Balanced Fertilizer Application

Author(s):  
Teshome Mesfin ◽  
Serkalem Tamru ◽  
Yeshibir Aklilu ◽  
Dagne Bekele

Wheat requirement of nitrogen for plant growth, and crop yields and quality depends upon substantial N inputs. Therefore, a field experiment was carried out at Gimbichu district in 2017 and 2018 main cropping season with the objective of evaluating the overall performance of applying slow-release/UREAstable fertilizer over the conventional urea fertilizer for durum wheat production, and to determine optimum rates of slow-release urea fertilizer for wheat productivity. The treatments consisted of Control, 90 kg N ha-1 from conventional urea applied in split, 90 kg N ha-1 from UREAstable applied once at planting, 90 kg N ha-1 from UREAstable applied in split, 45 kg N ha-1 from UREAstable applied once at planting, 45 kg N ha-1 from UREA stable applied in split form, 135 kg N ha-1 from UREA stable applied in split form, 135 kg N ha-1 from conventional UREA applied in split form and 135 kg N ha-1 from UREAstable applied once at planting. The results revealed that plant height, spike length, Tiller number, grain yield, biomass yield, harvest index and grain and straw uptake were significantly (P<0.05) affected by the application of slow release and conventional urea fertilizer. The highest spike length (3.8cm), Tiller number (2.1), grain yield (2205 kg ha-1), biomass yield (6968 kg ha-1) and nitrogen grain straw uptake (35.6 kg N ha-1) were recorded from 135kg N ha-1 urea stable fertilizer applied in split form followed by application of 135 kg N ha-1 conventional urea fertilizer applied in split form. While, maximum straw nitrogen uptake was obtained from application of 135 kg N ha-1 conventional urea fertilizer applied in split form. Therefore, taking the findings of the present study consideration it may be concluding that farmers can use 135 kg N ha-1 UREAstable fertilizer to improve nitrogen use efficiency and productivity of wheat in the study area in addition to conventional urea fertilizer. However, further research may be required at various locations to come up with an inclusive recommendation.

2015 ◽  
Vol 52 (2) ◽  
pp. 314-329 ◽  
Author(s):  
ANITA IERNA ◽  
GRAZIA MARIA LOMBARDO ◽  
GIOVANNI MAUROMICALE

SUMMARYLimited information is available concerning the influence of nitrogen fertilization jointly on yield response, nitrogen use efficiency (NUE) and grain quality of durum wheat under semi-arid Mediterranean conditions. The study focused on evaluating, through a systematic study, over three seasons in southern Italy the effects of three nitrogen fertilization rates (0, 80 and 160 kg N ha−1– N0, N80and N160), on grain yield, yield components, nitrogen efficiency indices and grain quality characteristics of three durum wheat genotypes (‘Creso’, ‘Trinakria’ and ‘Line 25’) from different breeding eras to achieve a more sustainable fertilization management of the durum wheat crop. We found that nitrogen fertilization at 80 kg N ha−1was able to maximize the yield performances (2.1 t ha−1year–1) of the crop and keep NUE index at an acceptable level (16.3 kg kg−1). On the other hand, nitrogen fertilization at 160 kg N ha−1improved grain quality measured through protein (up to 14.3%) and dry gluten concentration (up to 12.8%), but had a detrimental effect on grain yield and nitrogen efficiency. Among the genotypes studied, ‘Trinakria’ showed the greatest potential to utilize nitrogen fertilization to improve grain yield and NUE (at N80) and quality (at N160), ‘Line 25’ made good use of N80both for yield and quality, whereas ‘Creso’ proved wholly unresponsive to nitrogen. The effect of N fertilization on grain yield and N use efficiency depends on rainfall distribution, giving the best results when about 80% of total rainfall occurred from sowing to heading. Overall, our data show that in seasons with regular rainfall in quantity and distribution, combining no more than 80 kg ha−1of nitrogen fertilization with genotypes characterized by a more efficient response to nitrogen, is a useful tool to improve the agronomic and quality performance of the crop, ensuring, at the same time, a more environment-friendly nitrogen fertilization.


Author(s):  
B. Balaganesh ◽  
P. Malarvizhi ◽  
N. Chandra Sekaran ◽  
P. Jeyakumar ◽  
K. R. Latha ◽  
...  

Controlled release nitrogen fertilizers could be an excellent management approach for improving nitrogen fertilizer efficiency. The present study aimed to investigate the effect of coated urea fertilizers to increase nitrogen uptake and utilization of maize. The nitrogen use efficiency of maize from various biodegradable polymer-coated urea fertilizers, such as palm stearin coated urea (PSCU), pine oleoresin coated urea (POCU), and humic acid coated urea (HACU), was determined in a pot culture experiment conducted at the Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, during 2021. The coating materials have been coated on urea with different coating thicknesses, viz., PSCU - 5, 10, 15%, POCU – 2, 4, 6%, and HACU - 5, 10, 15%. Among all the treatments, T11: HACU 15% produced highest grain yield (72.0g plant-1) followed by T7: POCU 4% (69.7 g plant-1) and T4: PSCU 10% (69.0g plant-1). In terms of dry matter production, T10: PSCU 10% produced maximum dry matter (186.5g plant-1), followed by T11: HACU 15% (186.2 g plant-1), and T7: POCU 4% (185.3g plant-1). The nitrogen uptake by the maize plant was higher in T7: POCU 4 % (1.62g plant-1), followed by T11: HACU 15% (1.59 g plant-1) and T4: PSCU 10% (1.59g plant-1). Irrespective of treatments, the highest nitrogen utilization by the maize crop was found in T7: POCU 4% (73.9%) followed by T4: PSCU 10% (71.1%) and T11: HACU 15% (70.9%) treatments. When compared to uncoated urea fertilizer, all coated urea fertilizers outperformed uncoated urea fertilizer in terms of grain yield, dry matter accumulation, and nitrogen uptake. To improve the nitrogen use efficiency, coated urea fertilizers prove to be a promising alternative to uncoated urea fertilizers.


2013 ◽  
Vol 82 (4) ◽  
pp. 337-344 ◽  
Author(s):  
Toshiaki Kokubo ◽  
Akira Miyazaki ◽  
Tetsushi Yoshida ◽  
Yoshinori Yamamoto ◽  
Naomi Asagi ◽  
...  

2016 ◽  
Vol 19 (1) ◽  
pp. 1-10
Author(s):  
MKA Bhuiyan ◽  
L Nahar ◽  
MM Mahbub ◽  
R Shultana ◽  
MAJ Mridha ◽  
...  

An experiment was conducted at the Bangladesh Rice Research Institute (BRRI), Gazipur during Boro season of 2013-14 and 2014-15 to find out the nitrogen use efficiency and yield of boro rice var. BRRI dhan28 and BRRI dhan29 under four N management practices such as application of prilled urea using prilled urea applicator, application of USG (2.7gm) using USG applicator, broadcasting of prilled urea following three splits and a control (without urea). The experimental design was RCBD replicated thrice. BRRI dhan29 with urea broadcasted plots produced higher grain yield (7.38t ha-1) followed by BRRI dhan29 with USG application (6.65 t ha-1). Hand broadcasting with urea fertilizer showed 15.38.5and 2.5, 9.89% higher grain yield than machine application of prilled urea and USG in BRRI dhan28 and BRRI dhan29, respectively. Grain yield showed a significant quadratic response to N fertilization and significant linear response with total dry matter production in both the varieties. Higher total N was uptake from urea broadcasted plots in BRRI dhan29 followed by urea broadcasted from BRRI dhan28. BRRI dhan29 with Prilled urea applicator and BRRI dhan29 with USG treatment uptake intermediate nitrogen. N uptake in grain and total N uptake had a significant linear and quadratic response to N treatment in BRRI dhan28 and BRRI dhan29. Nitrogen use efficiency was higher in BRRI dhan29 compared to BRRI dhan28. Economic analysis showed that rice var. BRRI dhan28 and BRRI dhan29 with urea broadcast had the highest gross return of Tk.145145.00 and Tk. 158310.00 ha-1, respectively. However, the maximum cost (Tk. 151131) was involved for BRRI dhan29 with urea broadcasting, while the minimum with no urea fertilizer application for both the varieties. The highest marginal rate of return (MRR) (Tk.1146) was recorded from BRRI dhan28 with USG application using BRRI applicator.Bangladesh Agron. J. 2016, 19(1): 1-10


Author(s):  
Xiaojie Feng ◽  
Xiumei Zhan ◽  
Xiaori Han ◽  
Kun Chen ◽  
Jing Peng ◽  
...  

Slow-release nitrogen fertiliser can potentially increase crop production and improve fertiliser nitrogen use efficiency. However, it is unclear that are suitable for different regions and crops in the northeast of China. Therefore, according to different soil and climate characteristics, we investigated the synchronised relationships between nitrogen slow release fertiliser and nitrogen maize requirements. Experiments were conducted at Shenyang Agricultural University, Liaoning province, Northeast China, from 2016 to 2017. Stabilised fertiliser treatments increased grain yield, nitrogen use efficiency and nitrogen accumulation at each maize growth stage. Grain yield increased by 2.32% and 11.33% (2016), and 1.55% and 7.87% (2017), respectively, when compared with the urea CK1 (233 kg N/ha)<br /> and CK2 (210 kg N/ha) treatments. Additionally, during the growth period of the stabilised fertiliser treatment, the stability of the synchronisation relationship between nitrogen absorption and absorption of spring maize was significantly higher than other treatments, and the effect was the best. Therefore, we conclude that the stabilised fertiliser is the most suitable option for promotion and application in spring maize in Northeast China.  


2015 ◽  
Vol 41 (3) ◽  
pp. 422 ◽  
Author(s):  
Cheng-Xin JU ◽  
Jin TAO ◽  
Xi-Yang QIAN ◽  
Jun-Fei GU ◽  
Bu-Hong ZHAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document