scholarly journals Microbial Diversity of Acetic Acid Producing Bacteria from Protein-Rich Residues

Author(s):  
G. C. Onyenegecha ◽  
F. S. Ire ◽  
O. K. Agwa

Background: Acetic acid bacteria (AAB) are concrete sets of organism which act as precursor for acetic acid production. Acetic acid is a colorless liquid with strong pungent and sour smell. It is synthesized from oxidation of ethanol by AAB. Vast studies have been made from sugary sources in the isolation of AAB. Aim: The needs to study and utilize our protein-rich residues (PRR) for AAB presence spurn this study. Place and Duration of Study: Department of Microbiology, University of Port Harcourt, between June and December 2018. Methodology: The samples (beans, groundnut and powdered milk) used in this study were surface-sterilized, homogenized, pre-enriched (in balsam medium) and serially diluted with inoculum size (0.1ml) inoculated on sterilized glucose yeast peptone agar, Mannitol agar and low glycemic index (LGI) media and incubated at 30oC for 48 h using the spread plate technique. A total of 11 bacterial isolates were obtained and screened for acetic acid production in brain heart infusion and yeast glucose ethanol acetic acid broth at 30oC for 14 days and positive isolates were identified by titration method. AAB isolates with the highest acetic acid concentration were selected for molecular identification and further studies. Results: Two Acetic acid bacteria identified in this study were Acetobacter and Gluconobacter. The result of this study indicated that Acetobacter had acetic acid concentration of 3.6g/100ml while Gluconobacter had 1.8g/100 ml. However, molecular identification highlighted Acetobacter as Bacillus cereus with Genbank accession number MK 332142; whereas Gluconobacter was Stenotrophomonas maltophilia MK 332143. The neighbor-joining phylogenetic tree and bioinformatics revealed B. cereus and S. maltophilia as 97% and 96% similarity index, 854 and 883 nucleotide sequencing letters as well as 450 and 410 base pairs. Conclusion: This finding implied that “S. maltophilia” and “B. cereus” are predominant Acetic acid bacteria in spoilt beans and groundnut; and can act as potential strains with industrial importance to man and environment.

2017 ◽  
Vol 866 ◽  
pp. 61-64
Author(s):  
Duongruitai Nicomrat

Fresh fruit vinegar fermentation is well known for the activities of diverse groups of microorganisms at two stages of the fermentation process. Their species diversity depend on the raw materials fermented. In the study, at the first step of high sugar production, less culturable acetic acid bacterial species but more Aspergillus spp. and yeasts, non-Saccharomyces were detected. At the end, the vinegar production step, the fermented broth showed only dominant acetic acid bacteria. In the study, yeasts and fungi were isolated and inoculated to the juice. The results showed that these consortium could help increase high alcohol and later more acetic acid production when compared with the control fruit vinegar fermentation.


2019 ◽  
Vol 57 (5) ◽  
pp. 1904-1916 ◽  
Author(s):  
Souleymane Soumahoro ◽  
Honoré G. Ouattara ◽  
Michel Droux ◽  
William Nasser ◽  
Sébastien L. Niamke ◽  
...  

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 42
Author(s):  
Lucie Farrera ◽  
Alexandre Colas de la Noue ◽  
Caroline Strub ◽  
Benjamin Guibert ◽  
Christelle Kouame ◽  
...  

Acetic acid bacteria are involved in many food and beverage fermentation processes. They play an important role in cocoa bean fermentation through their acetic acid production. They initiate the development of some of the flavor precursors that are necessary for the organoleptic quality of cocoa, and for the beans’ color. The development of starter cultures with local strains would enable the preservation of the microbial biodiversity of each country in cocoa-producing areas, and would also control the fermentation. This approach could avoid the standardization of cocoa bean fermentation in the producing countries. One hundred and thirty acetic acid bacteria were isolated from three different cocoa-producing countries, and were identified based on their 16S rRNA gene sequence. The predominate strains were grown in a cocoa pulp simulation medium (CPSM-AAB) in order to compare their physiological traits regarding their specific growth rate, ethanol and lactic acid consumption, acetic acid production, and relative preferences of carbon sources. Finally, the intraspecific diversity of the strains was then assessed through the analysis of their genomic polymorphism by (GTG)5-PCR fingerprinting. Our results showed that Acetobacter pasteurianus was the most recovered species in all of the origins, with 86 isolates out of 130 cultures. A great similarity was observed between the strains according to their physiological characterization and genomic polymorphisms. However, the multi-parametric clustering results in the different groups highlighted some differences in their basic metabolism, such as their efficiency in converting carbon substrates to acetate, and their relative affinity to lactic acid and ethanol. The A. pasteurianus strains showed different behaviors regarding their ability to oxidize ethanol and lactic acid into acetic acid, and in their relative preference for each substrate. The impact of these behaviors on the cocoa quality should be investigated, and should be considered as a criterion for the selection of acetic acid bacteria starters.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jie Zheng ◽  
Changbing Zheng ◽  
Bo Song ◽  
Qiuping Guo ◽  
Yinzhao Zhong ◽  
...  

Here, we used Bama Xiang mini-pigs to explore the effects of different dietary β-hydroxy-β-methylbutyrate (HMB) levels (0, 0.13, 0.64 or 1.28%) on lipid metabolism of adipose tissue. Results showed that HMB decreased the fat percentage of pigs (linearly, P < 0.05), and the lowest value was observed in the 0.13% HMB group. Moreover, the colonic acetic acid concentration and the relative Bacteroidetes abundance were increased in response to HMB supplementation (P < 0.05). Correlation analysis identified a positive correlation between the relative Bacteroidetes abundance and acetic acid production, and a negative correlation between fat percentage and the relative Bacteroidetes abundance or acetic acid production. HMB also upregulated the phosphorylation (p) of AMPKα, Sirt1, and FoxO1, and downregulated the p-mTOR expression. Collectively, these findings indicate that reduced fat percentage in Bama Xiang mini-pigs could be induced by HMB supplementation and the mechanism might be associated with the Bacteroidetes-acetic acid-AMPKα axis.


Food Research ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 331-339
Author(s):  
J.G.B. Peralta ◽  
F.B. Elegado ◽  
J.F. Simbahan ◽  
I.G. Pajares ◽  
E.I. Dizon

The succession of the dominant microbial population during cacao fermentation with or without adjunct inoculation of yeast and lactic acid bacteria (LAB) were monitored on a laboratory scale using culture-dependent and culture-independent methods. Yeasts and acetic acid bacteria (AAB) population throughout a five-day fermentation process showed no significant differences but the LAB population increased through adjunct inoculation. Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) identification method showed the dominance of only Lactobacillus plantarum, one of the species used as the adjunct inoculum, which resulted in higher lactic acid production. On the other hand, Acetobacter spp. and Gluconobacter spp. were markedly observed in the spontaneously fermented set-up resulting in increased acetic acid production, significantly different (p>0.05) at three to five days of fermentation. LAB and yeast inoculation resulted in a more desirable temperature and pH of the fermenting mash which may result in better product quality.


2021 ◽  
Vol 85 (5) ◽  
pp. 1243-1251
Author(s):  
Nami Matsumoto ◽  
Naoki Osumi ◽  
Minenosuke Matsutani ◽  
Theerisara Phathanathavorn ◽  
Naoya Kataoka ◽  
...  

ABSTRACT Thermotolerant microorganisms are useful for high-temperature fermentation. Several thermally adapted strains were previously obtained from Acetobacter pasteurianus in a nutrient-rich culture medium, while these adapted strains could not grow well at high temperature in the nutrient-poor practical culture medium, “rice moromi.” In this study, A. pasteurianus K-1034 originally capable of performing acetic acid fermentation in rice moromi was thermally adapted by experimental evolution using a “pseudo” rice moromi culture. The adapted strains thus obtained were confirmed to grow well in such the nutrient-poor media in flask or jar-fermentor culture up to 40 or 39 °C; the mutation sites of the strains were also determined. The high-temperature fermentation ability was also shown to be comparable with a low-nutrient adapted strain previously obtained. Using the practical fermentation system, “Acetofermenter,” acetic acid production was compared in the moromi culture; the results showed that the adapted strains efficiently perform practical vinegar production under high-temperature conditions.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Kanako Omori ◽  
Hiroki Miyakawa ◽  
Aya Watanabe ◽  
Yuki Nakayama ◽  
Yijin Lyu ◽  
...  

Constipation is a common condition that occurs in many people worldwide. While magnesium oxide (MgO) is often used as the first-line drug for chronic constipation in Japan, dietary fiber intake is also recommended. Dietary fiber is fermented by microbiota to produce short-chain fatty acids (SCFAs). SCFAs are involved in regulating systemic physiological functions and circadian rhythm. We examined the effect of combining MgO and the water-soluble dietary fiber, inulin, on cecal SCFA concentration and microbiota in mice. We also examined the MgO administration timing effect on cecal SCFAs. The cecal SCFA concentrations were measured by gas chromatography, and the microbiota was determined using next-generation sequencing. Inulin intake decreased cecal pH and increased cecal SCFA concentrations while combining MgO increased the cecal pH lowered by inulin and decreased the cecal SCFA concentrations elevated by inulin. When inulin and MgO were combined, significant changes in the microbiota composition were observed compared with inulin alone. The MgO effect on the cecal acetic acid concentration was less when administered at ZT12 than at ZT0. In conclusion, this study suggests that MgO affects cecal SCFA and microbiota during inulin feeding, and the effect on acetic acid concentration is time-dependent.


Sign in / Sign up

Export Citation Format

Share Document