scholarly journals Test of Host Sanction Hypothesis in Soybean Plants Co-inoculated with Nitrogen Fixing and Non-fixing Bradyrhizobium japonicum

2015 ◽  
Vol 6 (2) ◽  
pp. 99-108 ◽  
Author(s):  
Diana Marco ◽  
Chouhra Talbi ◽  
Eulogio Bedmar
2015 ◽  
Vol 21 ◽  
pp. 39-43
Author(s):  
S. F. Kozar ◽  
I. M. Pyschur ◽  
V. M. Nesterenko

The paper presents the research results of pre-sowing seeds bacterization with nitrogen fixing bacteria Bradyrhizobium japonicum and Azospirillum brasilense influence on the loss of moisture, water soluble humus and nutrients. It was shown that seeds bacterization reduces the leaching intensity of nitrates, phosphorus, potassium, calcium and magnesium. Moreover, the least losses of nutrients were observed in a variants with joint application of both studied nitrogen fixing microorganisms. It was noted that seeds bacterization with B. japonicum and A. brasilense had promoted increase of chlorophyll content in the leaves of soybean plants. The highest yield was observed in the variant with the joint use of rhizobia and azospirillum.


Author(s):  
Alessandra M. de L. Naoe ◽  
Joênes M. Peluzio ◽  
Leonardo J. M. Campos ◽  
Lucas K. Naoe ◽  
Roberta A. e Silva

ABSTRACT This study aimed to verify the effect of co-inoculation, association between Azospirillum brasilense and Bradyrhizobium japonicum bacteria, on soybean plants subjected to water deficit at two sowing dates. Two field experiments were conducted at the Universidade Federal de Tocantins, campus of Palmas, Brazil, in 2016. The experimental design was randomized blocks in a split-split-plot arrangement with four repetitions, where the plots consisted of two irrigation depths (100 and 25% of crop evapotranspiration - ETc), the subplots was composed of two methods of inoculant application (inoculation with Bradyrhizobium japonicum and co-inoculation with Azospirillum brasilense + Bradyrhizobium japonicum) and the sub-subplots comprised two soybean cultivars (TMG 132 and ANTA 82). The cultivars responded differently to the sowing dates. Co-inoculation did not influence grain yield under full irrigation conditions (100% ETc), in neither cultivar evaluated. However, under the water deficit condition (25% ETc), the grain yield of the cultivar TMG 132 increased 77.20%, indicating that there are different responses of interaction between Azospirillum brasilense, plant genotype and sowing dates.


2018 ◽  
Vol 10 (12) ◽  
pp. 321 ◽  
Author(s):  
Erica Chaves ◽  
Rubson da Costa Leite ◽  
Thalita Rodrigues Silva ◽  
Thayny Alves Viana ◽  
Tatiane de Sousa Cruz ◽  
...  

Among the several factors that may influence nodulation and the efficiency of biological nitrogen fixation for soybean plants, nutrient availability is among the most important. This study aimed to evaluate the inoculation with Bradyrhizobium japonicum and doses of phosphorus on the development of soybean in a Vertisol, in Tocantins. The experimental design was completely randomized in a 4 × 2 factorial scheme, with four replications. Four doses of phosphate fertilization (0, 100, 200, and 300 kg ha-1 P2O5) were studied, combined with two inoculation treatments with Bradyrhizobium japonicum (inoculated and not inoculated). The following variables were evaluated: plant height, stem diameter, nodules per plant, dry mass of nodules, dry mass of plant, dry mass of root, number of pods and number of grains per pod. Under greenhouse conditions and soil with good availability of phosphorus, there is no influence of the doses on the inoculation with Bradyrhizobium japonicum. Soils with good availability of phosphorus have low response to the application of phosphate fertilizer.


2004 ◽  
Vol 186 (5) ◽  
pp. 1409-1414 ◽  
Author(s):  
Heather P. Benson ◽  
Kristin LeVier ◽  
Mary Lou Guerinot

ABSTRACT In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. Manganese interacts with the Fur protein and represses iron uptake genes. In the presence of high levels of manganese, bacteria with a wild-type copy of the fur gene repress iron uptake systems and starve for iron, whereas fur mutants fail to repress iron uptake systems and survive. The B. japonicum fur mutant, as expected, fails to repress iron-regulated outer membrane proteins in the presence of iron. Unexpectedly, a wild-type copy of the fur gene cannot complement the fur mutant. Expression of the fur mutant allele in wild-type cells leads to a fur phenotype. Unlike a B. japonicum fur-null mutant, the strain carrying the dominant-negative fur mutation is unable to form functional, nitrogen-fixing nodules on soybean, mung bean, or cowpea, suggesting a role for a Fur-regulated protein or proteins in the symbiosis.


2008 ◽  
Vol 23 (3) ◽  
pp. 215-220 ◽  
Author(s):  
Tan Van Dao ◽  
Mika Nomura ◽  
Rie Hamaguchi ◽  
Kensuke Kato ◽  
Manabu Itakura ◽  
...  

1988 ◽  
Vol 66 (4) ◽  
pp. 683-686 ◽  
Author(s):  
Jeanne M. L. Selker ◽  
John Imsande ◽  
Eldon H. Newcomb

Early emergent nodules on roots of hydroponically grown soybean plants (Glycine max (L.) Merr.) were sectioned serially to locate the site of infection by Bradyrhizobium japonicum. The plants had been inoculated only after their root systems had produced numerous higher order branches. The hydroponic solutions contained all required nutrients, including either a suboptimal concentration of nitrate (0.5 mM) or an excess of nitrate (4.0 mM). In all six nodules examined, three with suboptimal nitrate and three with excess nitrate, we found a centrally located root hair containing an infection thread. We conclude that mature root systems of soybean grown in aqueous culture can undergo infection through root hairs in the way that is typical of young seedlings grown either in pots of vermiculite or pouches.


2010 ◽  
Author(s):  
Ilko Ts. Iliev ◽  
Dora D. Krezhova ◽  
Tony K. Yanev ◽  
Elisaveta B. Kirova ◽  
Angelos Angelopoulos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document