scholarly journals Isolation of Escherichia coli, Klebsiella spp. and Staphylococcus spp. from Bovine Mastitic Milk in Nuwera Eliya District of Sri Lanka and their Sensitivity to Commonly Used Antibiotics

Author(s):  
T. S. P. J. Jayaweera ◽  
J. L. P. C. Randika ◽  
H. G. C. L. Gamage ◽  
N. N. Udawatta ◽  
W. U. N. T. S. Ellepola ◽  
...  

Aims: Mastitis is one of the very important and most common diseases among dairy cattle globally which leads to severe economical losses in the dairy industry. For the sustainability of the dairy sector it is critical that efficient, economically feasible treatment regime is available for clinical cases of mastitis as a part of the control program with minimum risk for residues in milk. Antimicrobials are the most common drugs of choice for controlling and preventing this devastating condition. But the frequent use of antibiotics leads to the development of resistant bacteria which could have an adverse effect on human health as well. To mitigate this destructive constraint in the industry, identifying the etiology and their susceptibilities to remedial measures are of paramount importance. Hence this study was aimed at isolating and identifying the common bacterial etiology Escherichia coli, Klebsiella spp. and Staphylococcus spp. of mastitis and evaluating the antimicrobial susceptibility of the isolates in order to develop mastitis control strategies in the area. Study Design: Milk samples were collected from mastitic cows in different stages including subclinical and clinical cases based on the results of California Mastitis Test Place and Duration of Study: Samples were collected from dairy farms in Nuwera Eliya District, Sri Lanka and Laboratory investigations were carried out in the Laboratory of Livestock Production, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Between Aug. 2017 and Nov. 2017. Methodology: E.coli, Klebsiella spp. and Staphylococcus spp. were isolated from 31 milk samples and susceptibility to commonly used antibiotics (Trimethoprim, Oxytetracycline, Chloramphenicol, Cephalexin, Enrofloxacin and Ciprofloxacin) was determined by Kirby Bauer disk diffusion method. Results: The study revealed that the most common isolate was the Klebsiella spp. and it is 54.8% and other two organisms Staphylococcus spp. had 51.6% and Escherichia coli 41.9%. Of all isolated pathogen, 97.1% exhibited resistant to Cephalexin and it was the highest while lowest resistance was to Chloramphenicol (31.4%). Among the other antibiotics, 54.3% of total isolates showed resistance to Trimethoprim followed by 42.9% to Oxytetracycline and Enrofloxacin, 34.3% was resistant to Ciprofloxacin. Resistance to at least one antibiotic was observed for the isolated microorganisms. All the three isolated pathogens are more resistant to Cephalexin. Both E. coli and Klebsiella spp. show 100% resistance to Cephalexin while Staphylococci had 92.9% resistance. This further revealed that E. coli (10%) and Klebsiella spp. (27.3%) are showing the least resistance to Chloramphenicol, None of Staphylococcus spp. (0%) isolated show resistance to Enrofloxacin. Conclusion: Most common organisms isolated were Klebsiella spp. followed by Staphylococcus spp., E. coli and there is a resistance of isolated organisms to some commonly used antibiotics.

2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2017 ◽  
Vol 55 (2) ◽  
pp. 113
Author(s):  
A. ZDRAGAS (Α. ΖΔΡΑΓΚΑΣ) ◽  
P. TSAKOS (Π. ΤΣΑΚΟΣ) ◽  
K. ANATOLIOTIS (Κ. ΑΝΑΤΟΛΙΩΤΗΣ)

Nine hundred and fifty two milk samples from clinical bovine mastitis cases, originated from 269 farms in Northern Greece, were tested. Escherichia coli was isolated in 49.3% of samples. Furthermore, Staphylococcus spp, Corynebacterium spp, Streptococcus spp, Pseudomonas spp, Proteus spp, Klebsiella spp or a combination of the above bacteria were isolated. The bacteriological result from 4.3% of samples was negative. No correlation between clinical mastitis cases and seasonal variation was observed. Resistance of E. coli isolates to tetracycline was 82-96%, to enrofloxacin 10-30%, to gentamicin 58-80%, to cephalosporins 47-75%, to sulfamethoxazole-trimethoprime 46-81%, to ampicillin 71-92% and to neomycin 83-97%. The highest resistance rate and the appearance of multi-resistant isolates of E. coli (6%), to 8 antibacterials, were recorded during the last year of the survey.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Laura Marchetti ◽  
Daniel Buldain ◽  
Lihuel Gortari Castillo ◽  
Andrea Buchamer ◽  
Manuel Chirino‐Trejo ◽  
...  

The close contact between dogs and humans creates the best bridge for interspecies transmission of antimicrobial-resistant bacteria. The surveillance of its resistance including the detection of extended-spectrum beta-lactamases (ESBLs) in Escherichia coli as indicator bacteria is an important tool to control the use of antimicrobials. The aim of this research was to evaluate the E. coli resistance in strains by phenotypic methods, isolated from pet and stray dogs of La Plata city, Argentina. Faecal samples were collected using rectal swabs from 50 dogs with owners (home dogs = HD) and 50 homeless dogs (stray dogs = SD). They were cultured in 3 MacConkey agar plates, with and without antibiotics (ciprofloxacin and cefotaxime). 197 strains were isolated, of which only 95 strains were biochemically identified as E. coli, 46 strains were from HD, and 49 were from SD. Antimicrobial susceptibility was evaluated by the Kirby–Bauer disk diffusion method. The most prevalent resistance was for tetracycline, streptomycin, and ampicillin. In both groups, the level of resistance to 3rd generation cephalosporins was high, and there were multiresistant strains. There was a higher level of antimicrobial resistance in strains from SD compared to HD. There were 8% of strains suspected of being ESBLs among samples of HD and 36% of SD. One (2%) of the strains isolated from HD and 11 (22%) from SD were phenotypically confirmed as ESBL. Pets and stray dogs are a potential source of E. coli antibiotic resistance in Argentina; therefore, its surveillance must be guaranteed.


2021 ◽  
Vol 2 (3) ◽  
pp. 48-54
Author(s):  
Valerii USHKALOV ◽  
Vyacheslav DANCHUK ◽  
Artem USHKALOV ◽  
Aidyn SALMANOV ◽  
Yuriy VISHOVAN ◽  
...  

ntroduction. The processing of most raw milk products can lead to contamination with unwanted microflora due to poor sanitation and hygienic conditions. The inadequate antibiotic use over the past decades has led to the emergence and wide spread of bacterial populations, particularly of Escherichia coli, which developed resistance to antibacterial drugs.Material and methods. Raw milk samples were obtained from clinically healthy cows on farms from Kiev and Poltava regions to identify E . coli, Staphylococcus spp., Enterococcus spp. isolates. Antimicrobial susceptibility testing was performed using the EUCAST disk diffusion method and MU on “Determination of microbial susceptibility to antibacterial drugs”. Results. The examined milk samples revealed the presence of E . coli, Staphylococcus spp. and Enterococcus spp. isolates, which proves poor sanitary and hygienic conditions of milk production process. Escherichia coli isolates were found susceptible to Ampicillin/sulbactam, Cefoxitin (100%), Meropenem, Tobramycin (100%), Netilin, Tigecycline, Nitroxoline (100%), Gatifloxacin, and Nitrofurantoin (100%). The studied E. coli isolates were found resistant to Ampicillin (100%), Imipenem, Tetracycline, and Doxycycline (100%). 41.7% of isolates of Staphylococcus epidermidis, Staphylococcus aureus were found resistant to Oxacillin, of which 90% were resistant to Benzylpenicillin and 20% to Rifampicin. Conclusions.The circulation of antibiotic-resistant Enterobacteriaceae strains among farm animals is a major problem requiring a strategy development aimed to prevent the emergence and spread of antibiotic resistance worldwide.


2020 ◽  
Vol 13 (10) ◽  
pp. 2156-2165
Author(s):  
Shah Jungy Ibna Karim ◽  
Mahfuzul Islam ◽  
Tahmina Sikder ◽  
Rubaya Rubaya ◽  
Joyanta Halder ◽  
...  

Background and Aim: Pigeon rearing has been gaining popularity for recent years. They are reared remarkably very close to the house of the owner. This activity, therefore, may pose potential threats for humans as well as other animals as pigeons may carry and spread different pathogens including drug-resistant bacteria. This study was conducted to explore the prevalence of Escherichia coli and Salmonella spp. as well as their antibiogram profile along with an association analysis. Materials and Methods: Forty swab samples were collected from 20 pigeons during the study. E. coli and Salmonella spp. were isolated and identified on various types of agars, including MacConkey, Eosin methylene blue, Brilliant green, and Salmonella-Shigella agar. Biochemical tests such as the carbohydrate fermentation test, the triple sugar iron agar slant reaction, the indole test, the methyl red test, the catalase test, as well as the Voges–Proskauer test were also performed. Besides, the presence of E. coli was further confirmed by polymerase chain reaction (PCR). Moreover, antimicrobial susceptibility testing of the isolates was performed against nine antibiotics from seven classes on the Mueller-Hinton agar based on the Kirby–Bauer disk diffusion method. Results: The overall prevalence of E. coli and Salmonella spp. was 52.5 and 27.5%, respectively. The prevalence of the pathogenic E. coli was 61.90%. The antibiogram profile of 21 E. coli as well as 11 Salmonella spp. revealed that all isolates, except one, were resistant to one to six antibiotics. Around 61.90%, 71.43%, 23.81%, 61.90%, 23.81%, 19.05%, and 52.38% of E. coli showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, gentamicin, and tetracycline, respectively. Furthermore, E. coli resistance was not observed in case of ciprofloxacin and levofloxacin. Similarly, around 36.36%, 27.27%, 27.27%, 45.45%, 81.82%, 100%, and 18.18% of the Salmonella spp. showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, tetracycline, and levofloxacin, respectively. However, all Salmonella spp. (100%) were found to show sensitivity against ciprofloxacin and gentamicin. Multidrug-resistant (MDR) E. coli (23.80%) and Salmonella spp. (54.54%) were also isolated. Furthermore, both positive (odds ratio [OR] >1) and negative (OR <1) drug resistance associations, with a higher frequency of positive associations, were found in E. coli. A significant positive association was observed between ampicillin and amoxicillin (OR: 81.67, 95% confidence interval: 2.73-2447.57, p=0.01). Conclusion: Pigeon carrying MDR E. coli and Salmonella spp. may contribute to the transmission and spread of these microorganisms. Therefore, strict hygienic measures should be taken during the farming of pigeons to decrease the potential transmission of E. coli and Salmonella spp. from pigeon to humans as well as other animals. So far, this is the first report of the PCR-based identification of pathogenic E. coli from pigeons in Bangladesh.


2020 ◽  
Vol 18 (6) ◽  
pp. 1091-1097
Author(s):  
Hisham N. Altayb ◽  
Eman Khalid Salih ◽  
Ehssan H. Moglad

Abstract This study aimed to detect the blaCTX-M group 1 in Escherichia coli (E. coli) isolated from drinking water in Khartoum State. Two hundred and eighty water samples were collected randomly from different areas, places, and sources from the state and examined for the presence of E. coli as a fecal contamination indicator. Isolation and identification of E. coli were performed using culture characteristics on different culture media and biochemical reactions. An antimicrobial sensitivity test was performed for all isolated E. coli using agar disk diffusion method. DNA was extracted by boiling method, and bacterial genomic DNA used as a template to detect blaCTX-M group 1 by PCR. Results showed 86 (30.7%) E. coli were isolated out of 280 water samples. Antimicrobial susceptibility testing revealed the highest resistant percentage was 59% for tetracycline, followed by 35% for gentamycin, while for chloramphenicol and cefotaxime was 22 and 20%, respectively. blaCTX-M group 1 was detected in about 40% of all isolates. This study concludes that drinking water in Khartoum State may be contaminated with feces and might be a possible source for transferring resistant bacteria. Thus, it may be one of the critical causes of increasing reports of antimicrobial resistance in Khartoum State.


2011 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ronak Bakhtiari ◽  
Jalil Fallah Mehrabadi ◽  
Hedroosha Molla Agamirzaei ◽  
Ailar Sabbaghi ◽  
Mohammad Mehdi Soltan Dallal

Resistance to b-lactam antibiotics by gramnegative bacteria, especially <em>Escherichia coli (E. coli)</em>, is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly <em>E. coli </em>is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of b-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no-one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 <em>E. coli </em>isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on <em>E. coli </em>isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin's indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) <em>E. coli </em>isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.


2007 ◽  
Vol 59 (2) ◽  
pp. 508-512 ◽  
Author(s):  
B.R. Paneto ◽  
R.P. Schocken-Iturrino ◽  
C. Macedo ◽  
E. Santo ◽  
J.M. Marin

The occurrence of toxigenic Escherichia coli in raw milk cheese was surveyed in Middle Western Brazil. Fifty samples of cheese from different supermarkets were analyzed for E.coli. The isolates were serotyped and screened for the presence of verotoxigenic E. coli (VTEC) and enterotoxigenic E. coli (ETEC) by Polymerase Chain Reaction (PCR). The susceptibility to thirteen antimicrobial agents was evaluated by the disk diffusion method. E.coli were recovered from 48 (96.0%) of the samples. The serogroups identified were O125 (6.0%), O111 (4.0%), O55 (2.0%) and O119 (2.0%). Three (6.0%) and 1(2.0%) of the E.coli isolates were VTEC and ETEC, respectively. Most frequent resistance was observed to the following antimicrobials: cephalothin (60.0%), nalidixic acid (40.0%), doxycyclin (33.0%), tetracycline (31.0%) and ampicillin (29.0%).


2019 ◽  
Vol 6 (1) ◽  
pp. e000369 ◽  
Author(s):  
Magdalena Nüesch-Inderbinen ◽  
Nadine Käppeli ◽  
Marina Morach ◽  
Corinne Eicher ◽  
Sabrina Corti ◽  
...  

BackgroundEscherichia coli is an important aetiological agent of bovine mastitis worldwide.MethodsIn this study, 82 E. coli from bovine mastitis milk samples from 49 farms were analysed for their genetic diversity using phylogenetic grouping and multilocus sequence typing. The isolates were examined by PCR for a selection of virulence factors (VFs). Antimicrobial susceptibility profiles were assessed using the disk diffusion method.ResultsThe most prevalent phylogroups were group B1 (41.5 per cent of the isolates) and group A (30.5 per cent). A variety of 35 different sequence types (STs) were identified, including ST1125 (11 per cent), ST58 (9.8 per cent), ST10 (8.5 per cent) and ST88 (7.3 per cent). Aggregate VF scores (the number of unique VFs detected for each isolate) ranged from 1 to 3 for 63.4 per cent of the isolates and were at least 4 for 12.2 per cent. For 24.4 per cent of the isolates, the score was 0. The three most frequent VFs were traT, fyuA and iutA. The majority (72 per cent) of the isolates harboured traT. The majority (68.3 per cent) of the isolates were fully susceptible to all antimicrobials tested, with 22 per cent resistant to ampicillin and 14.6 per cent to tetracycline. Resistance rates were low for gentamicin (3.7 per cent), amoxicillin/clavulanic acid (2.4 per cent) and ceftiofur (1.2 per cent), respectively.ConclusionAmong the study’s sample population, E. coli strains were genotypically diverse, even in cows from the same farm, although some STs occurred more frequently than others. Susceptibility to clinically relevant compounds remained high.


2020 ◽  
Vol 10 (1) ◽  
pp. 1-4
Author(s):  
Omor Ahmed Chowdhury ◽  
Md Raihan Ahmed ◽  
Md Raihan Dipu ◽  
Md Aftab Uddin

The use of earphones has increased in recent times throughout the world especially among the different level of students such as school, college or university who have a higher tendency of sharing these among them. Unlike airline headsets, headphones and stethoscope ear-pieces, ear phones are often shared by multiple users and can be a potential medium for transmission of pathogens, which can give rise to various ear related infections. The objective of this study was to detect the pathogenic bacteria from the ear-phones used by the students of Stamford University Bangladesh. A total of 16 ear-phone swabs were collected by sterile cotton swabs. The swabs were inoculated onto blood agar and incubated aerobically overnight at 37oC. Microscopic observation and standard biochemical tests were performed to confirm the identification of all the bacterial isolates. Six presumptively identified Staphylococcus spp. (38%) were tested against six different types of antibiotics following Kirby-Bauer disk diffusion method. Isolates were found to be 84% resistant against Cotrimoxazole and demonstrated 100% sensitivity to Vancomycin and Ciprorofloxacin. The findings of this study suggest the users to disinfect their respective ear phones and not to exchange them as they may act as a potential source to transfer pathogenic and antibiotic resistant bacteria among the ear phone users. Stamford Journal of Microbiology, Vol.10 (1) 2020: 1-4


Sign in / Sign up

Export Citation Format

Share Document