scholarly journals Process Design of Extend Forging Process by Numerical Simulation

2009 ◽  
Vol 50 (579) ◽  
pp. 343-348 ◽  
Author(s):  
Hideki KAKIMOTO ◽  
Takefumi ARIKAWA ◽  
Yoichi TAKAHASHI ◽  
Tatsuya TANAKA ◽  
Yutaka IMAIDA
2009 ◽  
Vol 50 (8) ◽  
pp. 1998-2004 ◽  
Author(s):  
Hideki Kakimoto ◽  
Yoichi Takashi ◽  
Hideki Takamori ◽  
Tatsuya Tanaka ◽  
Yutaka Imaida

2008 ◽  
Vol 49 (568) ◽  
pp. 403-408 ◽  
Author(s):  
Hideki KAKIMOTO ◽  
Yoichi TAKAHASHI ◽  
Hideki TAKAMORI

Rare Metals ◽  
2013 ◽  
Vol 32 (4) ◽  
pp. 347-353 ◽  
Author(s):  
Biao Guo ◽  
Chuan-Sui Sun ◽  
Sui-Cai Zhang ◽  
Chang-Chun Ge

2013 ◽  
Vol 712-715 ◽  
pp. 627-632
Author(s):  
Min Liu ◽  
Qing Xian Ma

Aiming at the disadvantages of low utilization ratio of steel ingot, uneven microstructure properties and long production period in the solid steel ingot forging process of heavy cylinder forgings such as reactor pressure vessel, a new shortened process using hollow steel ingot was proposed. By means of modeling of lead sample and DEFORM-3D numerical simulation, the deformation law and grain refinement behavior for 162 ton hollow steel ingot upsetting at different reduction ratios, pressing speeds and friction factors were investigated, and the formation rule of inner-wall defects in upsetting of hollow steel ingots with different shape factors was further analyzed. Simulation results show that the severest deformation occurs in the shear zone of meridian plane in the upsetting process of hollow steel ingot, and the average grain size in the shear zone is the smallest. As pressing speed increases, the forming load gradually increases and the deformation uniformity gets worse, while the average grain size decreases. An increase in friction factor can increase the peak value of effective strain, but it significantly reduces the deformation uniformity, increases the forming load and goes against grain refinement. Moreover, the four kinds of defects on the inner wall of steel ingot can be eliminated effectively by referring to the plotted defect control curve for hollow steel ingot during high temperature upsetting.


CIRP Annals ◽  
1985 ◽  
Vol 34 (1) ◽  
pp. 245-248 ◽  
Author(s):  
P. Bariani ◽  
W.A. Knight ◽  
F. Jovane

Author(s):  
Panuwat Soranansri ◽  
Tanaporn Rojhirunsakool ◽  
Narongsak Nithipratheep ◽  
Chackapan Ngaouwnthong ◽  
Kraisuk Boonpradit ◽  
...  

In hot forging industry, the process design and the billet size determination are very crucial steps because those steps directly influence both the product quality and material utilization. The purpose of this paper was to propose a technique used to design the hot forging process for the manufacturing of the talar body prosthesis. The talar body prosthesis is one of the artificial bones, which its geometry is a free form shape. In this study, the Finite Element Modeling (FEM) was used as a tool to verify the proposed design before implementation in a production line. In addition, an initial billet was determined the optimum size in the FEM by varying the mass ratio factor, the diameter, and the length. It was found that the mass ratio factor is a very useful guideline since the optimum size is quite close to the provided size from the guideline. The FEM results showed that the dimensions of the initial billet significantly affect the complete metal filling in the die cavity. Moreover, the optimum size between the diameter and length can reduce the material waste in the hot forging process of the talar body prosthesis. Finally, the experimental results of the hot forging process showed that the proposed process design with the optimum size of the initial billet is achieved in order to manufacture the talar body prosthesis and the material utilization of the new proposed process is improved from the traditional process by 2.6 times.


Sign in / Sign up

Export Citation Format

Share Document